

SN54290, SN54293, SN54LS290, SN54LS293 SN74290, SN74293, SN74LS290, SN74LS293

Decade and 4-Bit Binary Counters

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293. All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

'290, 'LS290 . . . DECADE COUNTERS '293, 'LS293 . . . 4-BIT BINARY COUNTERS

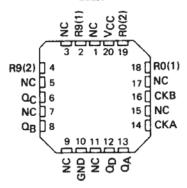
GND and VCC on Corner Pins (Pins 7 and 14 Respectively)

description

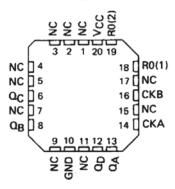
The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93. respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divideby-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.

All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications.

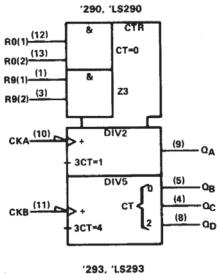

To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the QA output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-byten count can be obtained from the '290 and 'LS290 counters by connecting the QD output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

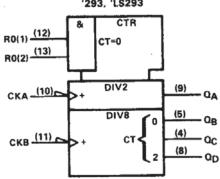
SN54290, SN54LS290, SN54293. SN54LS293 . . . J OR W PACKAGE SN74290, SN74293 . . . N PACKAGE SN74LS290, SN74LS293 . . . D OR N PACKAGE (TOP VIEW)


	290	2	93
R9(1)	14 VCC 13 R0(2) 12 R0(1) 11 CKB 10 CKA 9 QA	NC [] 1 1 1 1 1 1 1 1 1 1	14] VCC 13] R0(2) 12] R0(1) 11] CKB 10] CKA 9] QA
GND 7	8 QD	GND 7	8 QD

SN54LS290, SN54LS293 . . . FK PACKAGE (TOP VIEW)

'LS290


LS293



NC - No internal connection

logic symbols†

 $^{^\}dagger$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

'290, 'LS290 BCD COUNT SEQUENCE

(5	See f	Vote	A)	
COUNT		OUT	PUT	W
COUNT	ap	aç	QB	QA
0	L	L	L	L
1	L	L	L	н
2	L	L	н	L
3	L	L	н	H
4	L	H	L	L
5	L	H	L	н
6	L	H	H	L
7	L	H	H	н
8	н	L	L	L
Q	н	11.		н

'290, 'LS290 BI-QUINARY (5-2)

		OUT	PUT	
COUNT	QA	ap	ac	QB
0	L	L	L	L
1	L	L	L	н
2	L	L	Н	L
3	L	L	H	н
4	L	н	L	L
5	н	L	L	L
6	н	L	L	H
7	н	L	Н	L
8	н	L	H	Н
9	н	н	Ľ.	L

'290, 'LS290 RESET/COUNT FUNCTION TABLE

1	RESET	INPUTS	3		DUT	PUT	
R ₀ (1)	R ₀₍₂₎	Rg(1)	R9(2)	QD	ac	QB	QA
н	н	L	×	L	L	L	L
н	н	×	L	L	L	L	L
×	×	н	н	H	L	L	H
×	L	×	L		co	UNT	
L	×	L	×		CO	UNT	
L	X	×	L		co	UNT	
×	L	L	×		co	UNT	

'293, 'LS293 COUNT SEQUENCE (See Note C)

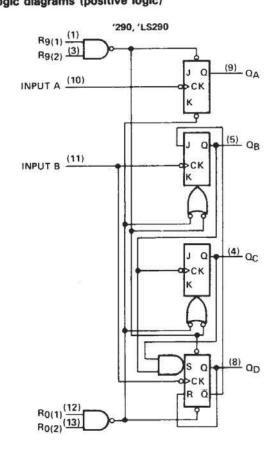
COUNT		OUT	PUT	
COOI41	QD	QC	QB	QA
0	L	L	L	L
1	L	L	L	н
2	L	L	н	L
3		L	H	H
4	L	H	L	L
5	L	н	L	Н
6	L	н	н	L
7	L	н	н	н
8	н	L	L	L
9	н	L	L	н
10	н	L	н	L
11	н	L	н	Н
12	н	н	L	L
13	н	H	L	H
14	н	н	н	L
15	н	н	н	н

'293, 'LS293 RESET/COUNT FUNCTION TABLE

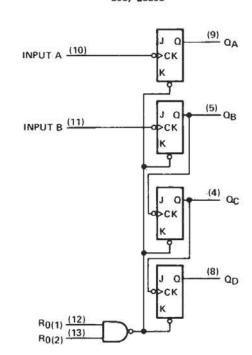
OUTPUT

QD QC QB QA

COUNT

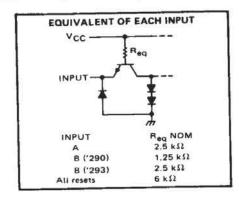

COUNT

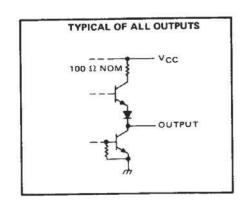
L L


			RESET	INPUTS	Ĭ
NOTES:		Output QA is connected to input B for BCD count.	R ₀₍₁₎	R0(2)	1
	В.	Output QD is connected to input A for bi-quinary count.	н	н	1
	C.	Output Q _A is connected to input B.	ι	×	

- D. H = high level, L = low level, X = irrelevant

logic diagrams (positive logic)





Pin numbers shown are for D, J, N, and W packages. The J and K inputs shown without connection are for reference only and are functionally at a high level.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				63	312	23	92	200		27. 3	12	WE 8	 				9 90	339	300	12	20			•)) -)	3 6			/ V
Supply voltage, VCC (see Note 1)	•									900																	5.5	5 V
Input voltage						*		*	*	X ()	*	9 0 3	ti) (t	100				•	*	3.7		1	•				-	
Internal ittor valtage (see Note 2)																								 BO 22	+		•	~ .
Operating free-air temperature range		SI	154	1' (Cir	cuit	S			5.3	1	(a)	99 8	9.00	9 0								*	-5	5 (. 10	1 12:	o c
7.5000 # 3 S		SN	174	1' (Cir	cuit	S		÷			£ 8			٠.	7			×	0.00		•	•	*	-	-		70.
Storage temperature range																								-6	5 (C to	150	0°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

 This is the voltage between two emitters of a multiple-amitter transistor. For these circuits, this rating applies between the two Ro inputs, and for the '290 circuit, it also applies between the two R9 inputs.

recommended operating conditions

			SN5	4'		SN74	•	רומט
		MIN	NOM	MAX	MIN	NOM	MAX	UNI
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-	-800			-800	μА
Low-level output current, IQL				16			16	mA
core inter output somethy OL	A input	0		32	0		32	MHZ
Count frequency, fcount	B input	0		16	0		16	IVIII
*	A input	15			15		100	1
Pulse width, tw	B input	30		1	30		Settle -	ns
ruise muiii, iw	Reset inputs	15	1 10		15	27		L.
Reset inactive-state setup time, t _{su}		25			25			ns
Operating free-air temperature, TA		~55		125	0		70	°c

SN54290, SN54293, SN74290, SN74293 **DECADE AND 4-BIT BINARY COUNTERS**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						'290			'293		
	PARAMETER		TEST CONDITIO	INS	MIN	TYP!	MAX	MIN	TYP#	MAX	UNIT
VIH	High-level input voltage		1/7		2	SOLUTION STATE		2	- V		٧
VIL	Low-level input voltage		VIII	3-0311-20-00			0.8			8.0	V
VIK	Input clamp voltage		VCC = MIN, 11 = -1	2 mA			-1.5			-1.5	٧
VOH	High-level output voltage		V _{CC} = MIN, V _{IH} = V _{IL} = 0.8 V, I _{OH} =		2.4	3.4	8	2.4	3.4		V
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = V _{IL} = 0.8 V, I _{OL} =			0.2	0.4		0.2	0.4	v
11	Input current at maximum in	put voltage	VCC = MAX, VI = 5	.5 V		25 P.O.C. P.O.C.	1	===:		1	mA
		Any reset					40			40	
Ιн	High-level input current	A input	VCC = MAX, VI = 2	.4 V			80			80	μΑ
		B input					120			80	l
		Any reset	18.00 0/200				-1.6			-1.6	
IIL.	Low-level input current	A input	VCC = MAX, VI = 0	.4 V			-3.2			-3.2	mA
		B input	E-CORNELL ROSSELVESSI SON VIN				-4.8			-3.2	l
				SN54*	-20		-57	-20		-57	
los	Short-circuit output current	•	V _{CC} = MAX	SN74'	-18		-57	-18		-57	mA
1 _{CC}	Supply current		VCC = MAX, See No	te 3		29	42		26	39	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

menerale come control process and the	FROM	то			'290			'293		
PARAMETER#	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MiN	TYP	MAX	UNIT
	Α	Ω _A		32	42		32	42		MHz
^f max	В	ΩB		16	20		16	last.		IVITIZ
tPLH	A	0.	1		10	16		10	16	ne
tPHL .	1 ^	QA			12	18		12	18	ns
^t PLH		0-			32	48		46	70	ns
tpHL .	A	σD	C = 15 = 5		34	50		46	70	113
tPLH .	В	0-	C _L = 15 pF,		10	16		10	16	ns
^T PHL	P P	ОВ	R _L = 400 Ω, See Note 4		14	21		14	21	1113
tPLH .		0-	See Note 4		21	32		21	32	
tPHL .	В	αc			23	35		23	35	uns
tPLH .	Burner Br	0-	7		21	32		34	51	ne
tPHL	В	α _D			23	35		34	51	ns
^t PHL	Set-to-0	Any			26	40		26	40	ns
^t PLH	Set-to-9	Q_A, Q_D			20	30				ns
†PHL	Set-10-9	QB, QC			26	40		#		1115

[#]fmax = maximum count frequency

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at V_{CC} = 5 V, T_{A} = 25°C. §Not more than one output should be shorted at a time.

^{\$\}Q_A\$ outputs are tested at \$I_{OL}\$ = 16 mA plus the limit value of \$I_{IL}\$ for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 3: ICC is measured with all outputs open, both Ro inputs grounded following momentary connection to 4.5 V, and all other inputs

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

schematics of inputs and outputs

SN54LS290, SN54LS293, SN74LS290, SN74LS293 DECADE AND 4-BIT BINARY COUNTERS

EQUIVALENT OF A AND B INPUTS TYPICAL OF ALL OUTPUTS EQUIVALENT OF EACH RESET INPUT Vcc 120 Ω NOM R2 ACC. 20 kΩ NOM INPUT OUTPUT INPUT NOMINAL VALUES R2 INPUT 10 kΩ 10 kΩ 10 kΩ 5 kΩ 6.7 kΩ 6.7 kΩ B ('LS290) 15 kΩ 15 kΩ 10 kΩ B ('LS293)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 5)																												6			/ V
Input voltage: R inputs	65	7.	- 25	- 20								. Si	160	27	7.0	50	100	18	50 12			7				- 30	504			7.965	7 V
A and B inputs	i.	•		•				*		*		: ::	2	20	2	20	20	200	ū												5.5 V
Operating free-air temperature range:		SI	15	41	S2	90)	SN	154	4 L	S2	93				70											_	55	°C	to	125°C
Operating nee-an temperature range.	•	SI	17	4 L	S2	90),	SN	174	4 L	S2	93	į		*	*		*:		18 9 5					٠			- 03	U	- L	0 /0 0
Storage temperature range	94								*							*		20		٠	*		٠	٠	٠		-	65	C	to	150°C

NOTE 5: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	N54LS			SN74LS	3"	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	**	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μΑ
Low-level output current, IQL			9	4			8.	mA
EOW PETEL GRAPH CONTROL OF	A input	0		32	0		32	MHz
Count frequency, f _{count}	B input	0	100	16	0		16	100.00
	A input	15			15			
Pulse width, t _w	B input	30			30			ns
raise width, tw	Reset inputs	30			30			
Reset inactive-state setup time, t _{SU}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°c

SN54LS290, SN54LS293, SN74LS290, SN74LS293 **DECADE AND 4-BIT BINARY COUNTERS**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS†			SN54LS'			SN74LS'			UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	ON
VIH	High-level inpu	t voltage				2			2			V
VIL	Low-level input voltage						=	0.7			8.0	V
VIK	Input clamp voltage		V _{CC} = MIN, I _I = -18 mA					-1.5			-1.5	V
VOH	High-level output voltage		V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 μA		2.5	3.4		2.7	3.4		V
300	Low-level output voltage			V _{1H} = 2 V,	IOL = 4 mA¶		0.25	0.4	,	0.25	0.4	v
VOL					IOL = 8 mA¶					0.35	0.5	
	Input current at maximum input voltage	Any reset	VCC = MAX,	V ₁ = 7 V				0.1			0.1	mA
		A input	VCC = MAX,	V _I = 5.5 V			58111	0.2		710-	0.2	
l ₁		B of 'LS290					escil.	0.4			0.4	
		B of 'LS293					215	0.2			0,2	
	High-level input current	Any reset	V _{CC} = MAX,	V _I = 2.7 V	507200A		20			20		
		A input						40			40	μА
ΉН		B of 'LS290						80			80	"
		B of 'LS293						40	3 /		40	
կլ	Low-level input current	Any reset	V _{CC} = MAX,					-0.4			-0.4	
		A input		V ₁ = 0.4 V				-2.4			-2.4	mA
		B of 'LS290				5-25	65	-3.2			-3.2	
		B of 'LS293						-1.6			-1,6	
los	Short-circuit output current §		V _{CC} = MAX			-20		-100	-20		-100	m/
-03	Supply current		V _{CC} = MAX,	See Note 3	'LS290		9	15		9	15	m/
Icc					'LS293		9	15		9	15	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS290			'LS293			
PARAMETER#				MIN	TYP	MAX	MIN	TYP	MAX	UNI
	А	QA		32	42		32	42		мн
fmax	В	ΩB	C _L = 15 pF, R _L = 2 kΩ, See Note 4	16			16			
^t PLH	A	QA			10	16		10	16	ns
1PHL					12	18		12	18	
tPLH					32	48		46	70	ns
tPHL	A	QD			34	50		46	70	
^t PLH	5	OB			10	16		10	16	ns
[†] PHL	В				14	21		14	21	
tPLH .					21	32		21	32	ns
tPHL .	В	ac			23	35		23	35	
tPLH .			Any		21	32	G.H.	34	51	-
tPHL	В	a_{D}			23	35		34	51	ns
tPHL.	Set-to-0	Any			26	40		26	40	nş
tPLH		Q _A , Q _D			20	30				ns
†PHL	Set-to-9	Q _B , Q _C			26	40				

[#]fmax = maximum count frequency

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_{Δ} = 25°C. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

PQA outputs are tested at specified IOL plus the limit value of IIL for the B input. This permits driving the B input while maintaining full

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output