

SN54LS681, SN74LS681

4-Bit Parallel Binary Accumulators

These low-power Schottky IC's integrate a high-speed arithmetic logic unit (ALU) complete with word A and word B registers on a single chip. The ALU performs 16 arithmetic and 16 logic functions. Full carry look-ahead is provided for fast carry of four-bit words. The carry input (C_n) and propagate and generate outputs (\overline{P} and \overline{G}) are provided for direct use with SN54S182/SN74S182 carry look-ahead generators for optimum performance with longer words.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

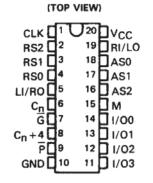
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

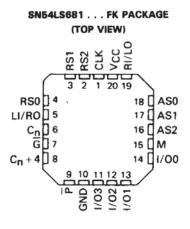
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54LS681 . . . J OR W PACKAGE

SN74LS681 . . . DW OR N PACKAGE


D2422, JANUARY 1981 - REVISED MARCH 1988


- Full 4-Bit Binary Accumulator in a Single 20-Pin Package
- Contains Two Synchronous Registers: Word A Word B Shift/Accumulator
- 16 Arithmetic Operations Including B Minus A and A Minus B
- 16 Logic-Mode Operations
- Expandable to Handle N-Bit Words with Full Carry Look-Ahead
- Bus Driving I/O Ports

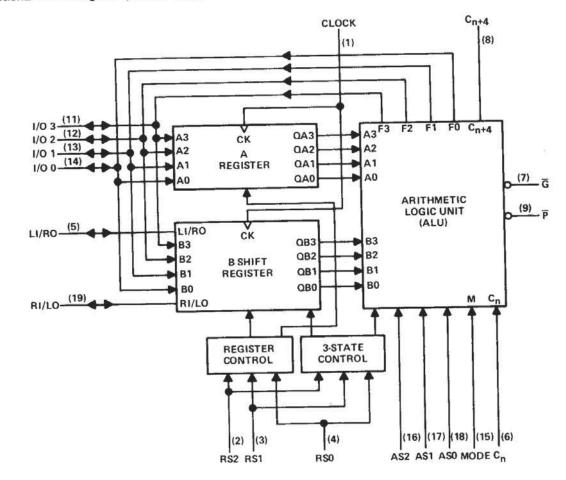
description

These low-power Schottky IC's integrate a high-speed arithmetic logic unit (ALU) complete with word A and word B registers on a single chip. The ALU performs 16 arithmetic and 16 logic functions (see Tables 1 and 2). Full carry look-ahead is provided for fast carry of four-bit words. The carry input (C_n) and propagate and generate outputs (\overline{P} and \overline{G}) are provided for direct use with SN54S182/SN74S182 carry look-ahead generators for optimum performance with longer words.

The A and B registers are controlled by three inputs (RSO, RS1, and RS2). These pins define eight distinct register modes (see Table 3). The A register is a simple storage register while the B register is a combination storage/shift/accumulator register. The contents of the A and B registers provide the A and B words for the ALU.

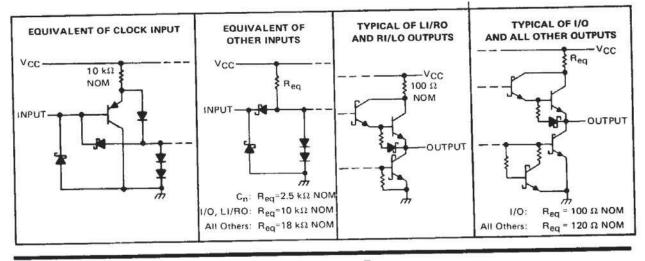
2

ITL Devices


Four I/O ports (I/O 0 thru I/O 3) are provided for parallel loading of word A and/or word B into their respective registers. These same ports also serve as bus driving outputs for the ALU/accumulator results (Fj). Two additional I/O ports (RI/LO and LI/RO) are provided to allow expansion of the accumulator for words greater than four bits in length.

The A or B register can be parallel loaded from the four I/O ports. The B register can also be parallel loaded from the ALU as an accumulator register and in addition, the B register can be serially loaded from either the RI/LO or the LI/RO ports.

The SN54LS681 is characterized for operation over the full military temperature range from ~55°C to 125°C. The SN74LS681 is characterized for operation from 0°C to 70°C.



functional block diagram (positive logic)

Q TTL Devices

schematics of inputs and outputs

TEXAS INSTRUMENTS

FUNCTION TABLES

TABLE 1 - ARITHMETIC FUNCTIONS

Mode Control (M) = Low

	ALU		ACTIVE-HIGH DATA							
SELECTION		ION	C _n = H	C _n = L						
AS2	AS1	AS0	(with carry)	(no carry)						
L	L	L	Fj = L	F _j = H						
L	L	н	F = B MINUS A	F = B MINUS A MINUS 1						
L	н	L	F = A MINUS B	F = A MINUS B MINUS 1						
L	н	н	F = A PLUS B PLUS 1	F = A PLUS B						
н	L	L	F = B PLUS 1	F; = B;						
н	L	н	F = B PLUS 1	$F_i = \overline{B}_i$						
н	н	L	F = A PLUS 1	Fi = Ai						
н	н	н	F = A PLUS 1	$F_i = \overline{A}_i$						

TABLE 2 - LOGIC FUNCTIONS Mode Control (M) = High

ALU			ACTIVE-HIGH DATA							
SE	LECTI	ON	C _n = H	C _n = L						
AS2 AS1 AS0			(with carry)	(no carry)						
L	L	L	F0 = H, F1 = F2 = F3 = L	Fi≃L						
L	L	н	Fj = Aj 🕀 Bj PLUS 1	Fi = Ai 🕀 Bi						
L	н	L	Fi = Ai (Bi PLUS 1	Fi = Ai 🕀 Bi						
L	н	н	Fj = L	Fi = H						
н	L	L	Fi = AiBi PLUS 1	$F_i = A_i B_i$						
Ъ	L	н	Fi = Ai + Bi PLUS 1	$F_i = \overline{A_i + B_i}$						
н	н	L	Fj = AjBj PLUS 1	$F_i = \overline{A_i B_i}$						
н	н	н	Fi = Ai + Bi PLUS 1	$F_i = A_i + B_i$						

		INPU	TS BE	FOREL	TO H	CLOC	K TRA	NSITIC)N		1201220	INTE	RNAL	OUTPU	TS AFT	ERLT	OHCI	OCK T	RANSI	TION	š		
FUNCTION	0.000	GIST.					INPUT	s			A REG	ISTER			Contraction of Contraction	HIFT F				Γ	-	LU	****
	RS2	RS1	RSO	LI/RO	1/0 3	1/0 2	1/0 1	1/0 0	RI/LO	QA3	QA2	QA1	QAO	LI/RO	QB3	082	QB1	080	RI/LO	F3	F2	F1	FO
ACCUM	L	L	L	Z	F3	F2	F1	FO	z	QA30	QA20	QA10	QAOO	Z	F3n	F2n	F1n	FOn	Z	F3	_	F1	FO
LOADB	L	L	н	Z	b3	b2	61	b0	z	QA30	QA20	QA10	QAGO	z	b3	b2	b1	b0	Z	Z	Z	Z	Z
LEFT SHIFT LOGICAL	L	н	L	li	F3	F2	F1	FO	080				QA00	1	li	QB3n	082n	QB1n	Q81 _n	F3	F2	F1	FO
LEFT SHIFT ARITH	L	н	н	li	F3	F2	F1	FO	QB0	QA30	QA20	QA 10	QA00	н	083n	н	QB2n	QB1n	QB1n	F3	F2	F1	FO
RIGHT SHIFT LOGICAL	н	L	Ľ	QB3	F3	F2	F1	FO	ri	QA30	QA20	QA10	QA00	QB2n	QB2n	QB1n	QB0n	ri	ri	F3	F2	F1	fO
RIGHT SHIFT ARITH	н	L	н	Q82	F3	F2	F1	FO	ri	QA30	QA20	QA10	0.400	QB1n	QB3n	QB1n	QB0n	ri	ri	F3	F2	F1	FO
HOLD	н	н	L	Z	F3	F2	F1	FO	Z	QA30	QA20	QA10	QAO	z	0830	Q82n	QBto	QBOn	z	F30	E20	E1o	F00
LOADA	н	H	н	ż	a3	a 2	a1	oe	Z	83	a2	al	aO	7		QB20		~	7	z	Z	-	7

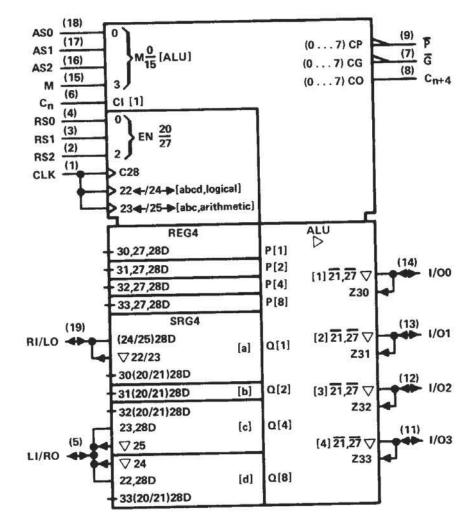
H = high level (steady state)

L = low level (steady state)

Z = high impedance (output off)

a0...a3, b0...b3 = the level of steady - state condition at I/O 0 thru I/O 3, respectively and intended as A or B input data

F0...F3 = internal ALU results


QA00... QB00, F00... F30 = the level of QA0 thru QB3 and F0 thru F3, respectively, before the indicated steady-state input conditions were established

 $QAO_n...QB3_n =$ the level of QAO thru QB3 before the most recent \dagger transition of the clock

ri, II = the level of steady-state conditions at RI/LO or LI/RO, respectively

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	7V
Supply voltage, VCC (see Note 1)	7 V
Input voltage	-55°C to 125°C
Operating free-air temperature range: SN54LS6	
01241 00	
Storage temperature range	—65°C to 150°C

NOTE 1: Voltage values are with respect to the network ground terminal.

I

TTL Devices N

	o. dener	ML 8696 23 - 57 -			SN54LS681			SN	UNIT			
				h	MIN NOM MAX			MIN NOM MAX				
Supply	voltage, VCC				4.5	5	5.5	4.75	5	5.25	v	
			LI/RO, I/O, RI/LO			1.000.000	-1			-2.6	mA	
High-le	vel output current,	юн	P, G, Cn+4			4	0.4			- 0.4	mA	
6 00			1/0			and the second	12			24		
			Cn+4, LI/RO, RI/LO				4			8		
		P			8			8	mA			
			G	1			16		10-115-115 (F	16		
Clock f	requency, fclock				0		20	0		20	MH	
	of clock pulse, tw(c	look)			25			25			ńs	
			RS0-RS2 to CLK1		35		-	30				
Setup t	ime, t _{su}		Data I/O to CLK1		25		-+	25		-1	ns	
Hold ti	me ti	، محمد المحمد م			0		-	0			ns	
	ing free-air tempera				-55		125	0		70	°c	
				1								
ectri	cal characteris	ucs over recomme	ended operating fro	ee-air temp							tea)	
PARAMETER		TEST CONDIT		154LS6		SN74LS681			UNIT			
						TYP [‡]	MAX	1	1 787	MAX		
⊻ін	High-level input vo			2	2		0.7	2	4 1	0.7	V	
VIL		Cn			-			-		0.7	ł v	
199520	input voltage	All others	V _{CC} =MIN, I _I =-18 mA				0.7	-		-1.5	V	
VIK	Input clamp volta High-level				. 24	2.4	-1.5	1	2.0	-1.5	v	
VOH	Vou	All 1/0	V _{CC} =MIN, V _{IH} =2 V,	vil-vil ma		3.1		2.4 3.2			v	
output voltage	P, G, C _{n+4}	IOH=MAX		2.5	3.4		2.7	3.4				
		1/0		IOL=12 mA		0.25	0.4	-	0.25	0.4	v	
				1 _{OL} =24 mA		0.05		-	0.35			
VOL	Low-level	LI/RO, RI/LO, Cn+4	V _{CC} =MAX, V _{IH} =2 V,	and the second se	1	0.25	0.4	1	0.25	0.4		
-	output voltage		VIL=VIL max	IOL=8 mA	-	0.05		-	0.35	0.5		
		P G		IOL=8 mA	_	0.35	0.5	<u> </u>	0.35	0.5	-	
		G		IOL=16 mA		0.35	0.5		0.35	0.5		
	Off-state output		VCC=MAX, VIH=2 V,	VIL=VIL ma	×,		10		40			
OZH	알맞았어야 25일 집 것 그렇는 것	1/0, L1/R0, R1/L0	V _O =2.7 V		-		40			40	μA	
	voltage applied											
	Off-state output	1/0, L1/R0	VCC=MAX, VIH=2 V,	VIL=VIL ma	×.		- 0.8			- 0.8	mA	
OZL	current, low-level	RI/LO	V ₀ =0.4 V			- 0.			4 - 0.4			
	voltage applied		Notestan								<u> </u>	
÷	Input current	All I/O		V ₁ =5.5 V	+		0.1	-		0.1	1.	
կ	at maximim	Cn	V _{CC} =MAX		-	a state and a state of the stat			0.5		1.200.000	
	input voltage	All others		1 1	+		0.1			0.1		
	High-level	Cn			-		100			100		
liu	input current	All I/O	V _{CC} =MAX, V _I =2.7 V		1		40	-		40		
		All others				20			20			
Low-level		Cn				-4			-4	ł		
		1/0, L1/R0	VCC=MAX, VI=0.4 V				-0.8			-0.8		
	input current	CLK	100000000 1000 1000			-0.2			-0.2			
		All others			-	- 11 -	-0.4	1		-0.4	-	
12550	Short-circuit	1/0			-30		-130	-30		-130	1	
los	8	LI/RO, RI/LO, ₱, ₲, c _{n+4}	V _{CC} =MAX		20		-100	-20		-100	mA	
Icc Supply current		V _{CC} =MAX, RS0 at 4.5 All other I/O at 0 V		100	150		100	150	m/			

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operations.

⁺All typical values are at VCC = 5 V, TA = 25° C. SNot more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CO	NDITIONS	MIN TYP MAX	UNI		
^t PLH		P			25 40	ns		
tPHL					30 45			
^t PLH		G	RL = 667 Ω,	$C_1 = 45 pF$	26 40	ns		
^t PHL		3	HL-00734		27 40			
TPLH		1/0			27 40	ns		
TPHL	CLOCKT	1/0			29 40			
^t PLH	CLOCK	Cn+4			36 55	ns		
TPHL		Unit			34 50			
TPLH		LI/R0	R _L ≈ 2 kΩ,	$C_1 = 15 pF$	25 40	ns		
^t PHL		LITTO		10. H (10.10)	23 35			
TPLH		RI/L0			19 30	ns		
tPHL	-07 (55) (51)	RI/LO			17 30			
TPLH		P	B 667 O		30 45	ns		
tPHL					30 45	–		
tPLH		G		CL = 45 pF	27 35	ns		
TPHL	AS0-AS2			28 35				
tPLH					31 45	ns		
tPHL		1/0			29 45			
TPLH			$R_L = 2 k\Omega$,	C. = 15 pF	39 55	ns		
^t PHL		Cn+4	n[- 2 kit,		34 50			
TPLH		P RL = 667 Ω, I/O P = 2 k Ω		9 25	ns			
TPHL			$B_1 = 667 \Omega$	CL = 45 pF	9 20	ns		
tPLH			HL-00/11,		17 35			
TPHL	Cn				13 20			
TPLH			CL = 15 pF	20 30	ns			
TPHL		Cn+4	$R_L = 2 k \Omega,$		16 25	+		
tPLH		P	RL≠667Ω,		28 40	n		
^t PHL		P			29 40			
tPLH	1	Ğ		$C_1 = 45 \text{ pF}$	21 30			
TPHL	1	G			23 30	-		
^t PLH	MODE	110			30 45			
TPHL	1	1/0			28 40	4		
tPLH	1	0.14	RL=2kΩ,	CL = 15 pF	40 60	ns		
TPHL	1	Cn+4	нL - 2 кни,	6 <u> </u>	37 50			
1PZH	RS1-RS2			CL = 45 pF	28 45			
^t PZL		1/0	RL = 667 Ω	0L 40 b.	28 45	-		
tPHZ		1/0	HL-001 35	CL = 5 pF	35 65	n		
TPLZ				CL-SP	39 65			
1PZH				CL = 15 pF	25 40			
TPZL		11/50	P. = 2 kg		22 40			
1PHZ		LI/R0	$R_L = 2 k \Omega$	CL=5pF	21 40	ns		
tPLZ				C[~ 5 pr	34 60			
1PZH				0 15 - 5	22 40			
tPZL	1	0.40	D - 240	C _L = 15 pF	24 40			
tPHZ	1	RI/L0	$R_{L} = 2 k\Omega$	C F oF	11 30			
tPLZ	1			C _L = 5 pF	16 40	1		

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

2-1128