

# SN54S226, SN74S226

# 4-Bit Parallel Latched Bus Transceivers

These high-performance Schottky TTL quadruple bus transceivers employ dual-rank bidirectional four-bit transparent latches and feature three-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The bus-management functions implemented and the high-impedance controls offered provide the designer with a controller/transceiver that interfaces and drives system bus-organized lines directly. They are particularly attractive for implementing bidirectional transceivers and data-bus controllers.

## Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

## **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
  - Class Q Military
  - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
  - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

### TYPES SN54S226, SN74S226 4-BIT PARALLEL LATCHED BUS TRANCEIVERS

S

OCTOBER 1976-REVISED DECEMBER 1983 LODINOLOKAOE

- Universal Transceivers for Implementing System **Bus Controllers**
- Dual-Rank 4-Bit Transparent Latches Provide: - Exchange of Data Between 2 Buses In One
  - **Clock Pulse** - Bus-to-Bus Isolation
  - Rapid Data Transfer
  - Full Storage Capability
- Hysteresis at Data Inputs Enhances Noise Rejection
- Separate Output-Control Inputs Provide Independent Enable/Disable for Either Bus Output
- 3-State Outputs Drive Bus Lines Directly

#### description

These high-performance Schottky TTL quadruple bus transceivers employ dual-rank bidirectional fourbit transparent latches and feature three-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The bus-management functions implemented and the high-impedance controls offered provide the designer with a controller/ transceiver that interfaces and drives system busorganized lines directly. They are particularly attractive for implementing:

> **Bidirectional bus transceivers** Data-bus controllers

| SN54S226 J OR W PACKAGE<br>SN74S226 D, J OR N PACKAGE    |
|----------------------------------------------------------|
| (TOP VIEW)                                               |
|                                                          |
| A1 03 14 S2                                              |
| A2 4 13 B1                                               |
| A3 5 12 B2                                               |
|                                                          |
|                                                          |
| E E                                                      |
|                                                          |
| SN54S226 FK PACKAGE<br>SN74S226 FN PACKAGE<br>(TOP VIEW) |
| 5 5 2 1 20 19                                            |
| A1 ] 4 18 ] S2                                           |
| A2 5 17 B1                                               |
| NC 6 16 NC                                               |
| A3 7 15 B2                                               |
| A4 18 14 B3                                              |
| 9 10 11 12 13                                            |
|                                                          |

NC - No internal correction

GND

S

The bus-management functions, under control of the function-select (S1, S2) inputs, provide complete data integrity for each of the four modes described in the function table. Directional transparency provides for routing data from or to either bus, and the dual store and dual readout capabilities can be used to perform the exchange of data between the two bus lines in the equivalent of a single clock pulse. Storage of data is accomplished by selecting the latch function, setting up the data, and taking the appropriate strobe input low. As long as the strobe is held high, the data is latched for the selected function. Further control is offered through the availability of independent output controls that can be used to enable or disable the outputs as shown in the output-control function table, regardless of the latch function in process. Store operations can be performed with the outputs disabled to a high impedance (Hi-Z). In the Hi-Z state the inputs/outputs neither load nor drive the bus lines significantly. The p-n-p inputs feature typically 400 millivolts of hysteresis to enhance noise rejection.

BUS-MANAGEMENT FUNCTION TABLE

| OPERATION                            |                | B-TC           | O-B<br>CHES    | A-T            | Second Contractor | STROBES |           | MODE      |  |
|--------------------------------------|----------------|----------------|----------------|----------------|-------------------|---------|-----------|-----------|--|
|                                      | 2              | 1              | 2              | 1              | GBA               | GAB     | <b>S1</b> | <b>S2</b> |  |
| Pass B to A<br>Read out stored data  | Trans<br>Trans | Trans<br>Latch | Trans          | Latch          | L<br>H            | ×       | L         | L         |  |
| Read out stored data                 | Trans          | Latch          | Trans          | Latch          | x                 | X       | н         | 1         |  |
| Pass A to B<br>Read out stored dat   | Trans          | Latch          | Trans<br>Trans | Trans<br>Latch | ×                 | L       | L         | н         |  |
| Read in both buses<br>Store bus data | Latch<br>Latch | Trans<br>Latch | Latch<br>Latch | Trans<br>Latch | L<br>H            | L       | н         | н         |  |

L = low level H = high level

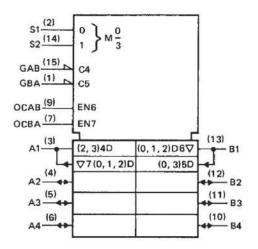
X = irrelevant

Latch = latched

.

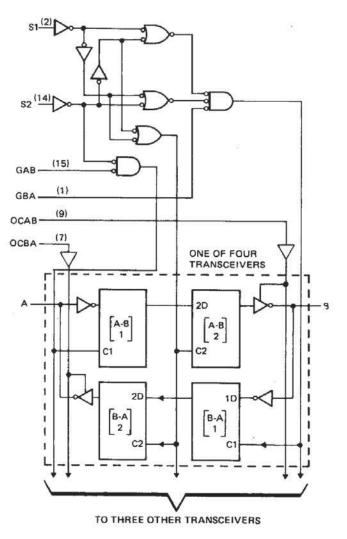
Trans = transparent

PRODUCTION DATA PHUDUCTIUM DATA This document contains infermation current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing dees not necessarily include testing of all parameters.




POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

3


### TYPES SN54S226, SN74S226 4-BIT PARALLEL LATCHED BUS TRANCEIVERS

logic symbol<sup>†</sup>



<sup>†</sup>This symbol is in accordance with IEEE Std 91/ANSI Y32.14 and current discussions in IEC and IEEE.





Pin numbers shown on logic notation are for D, J or N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

| Supply voltage, VCC (see Note 1)   |                |     | •   | ۰.  | ÷  |   | 22  | •  |    |      |    |   |   |   |   |    | æ  | × |   | × |    | <br>  | 19   | . 7V    |
|------------------------------------|----------------|-----|-----|-----|----|---|-----|----|----|------|----|---|---|---|---|----|----|---|---|---|----|-------|------|---------|
| Input voltage                      |                |     | -   |     |    | 4 | •   | •  | 8  |      | 2  | ÷ |   |   |   |    |    | 2 | 1 |   |    |       |      | . 5.5 V |
| Off-state output voltage           | ( <b>1</b> 27) | 345 |     | -   |    |   | 245 | ÷2 | 22 | - 22 | 18 | 1 | - | 2 |   | ÷. |    |   | - |   | 12 | 14.   | 35   | . 5.5 V |
| Operating free-air temperature ran |                |     |     |     |    |   |     |    |    |      |    |   |   |   |   |    |    |   |   |   |    |       |      |         |
|                                    |                | SN  | 174 | S22 | 26 |   |     | -  | •  | 82   |    |   |   | ÷ | × |    | 30 |   |   |   |    | <br>1 | D°C  | to 70°C |
| Storage temperature range          |                |     |     |     |    |   |     |    |    |      |    |   |   |   |   |    |    |   |   |   |    |       | °C 1 | o 150°C |

NOTES: 1. Voltage values are with respect to network ground terminal.

 An SN54S226 in the J package operating at temperatures above 113°C requires a heat-sink that provides a thermal resistance from case to free air, R<sub>0CA</sub>, of not more than 48°C/W.



----

# recommended operating conditions

|                                                 |           | 5   | S   | UNIT                                                                                  |      |     |       |      |
|-------------------------------------------------|-----------|-----|-----|---------------------------------------------------------------------------------------|------|-----|-------|------|
|                                                 |           | MIN | NOM | MAX                                                                                   | MIN  | NOM | MAX   | U.N. |
|                                                 |           | 4.5 | 5   | 5.5                                                                                   | 4.75 | 5   | 5.25  | Y    |
| Supply voltage, VCC                             |           |     |     | 5.5                                                                                   |      |     | 5.5   | V    |
| High-level output voltage, VOH                  |           |     |     | -6.5                                                                                  | 1    |     | -10.3 | mA   |
| High-level output current, IOH                  |           | 30  |     |                                                                                       | 20   |     |       | ns   |
| Width of strobe pulse                           | To Strobe | 301 |     |                                                                                       | 201  |     |       | ns   |
| Setup time, t <sub>su</sub>                     | To Select | 30  |     |                                                                                       | 20   |     |       | 1    |
|                                                 | To Strobe | Ot  |     | 5.5         4.75         5         5           -6.5         -1         20         201 |      | ns  |       |      |
| Hold time, th                                   | To Select | 0   |     |                                                                                       | 0    |     |       |      |
| Operating free-air temperature, TA (see Note 2) |           | -55 |     | 125                                                                                   | 0    |     | 70    | o °c |

† The arrow indicates that the low-to-high transition of the strobe input is used for reference.

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|     |                                   |                        | TEST CONDITIONST                                                                                                                                                               | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYP‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX     | UNIT    |
|-----|-----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
|     | PARAMETER                         |                        |                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | V       |
| ИН  | High-level input voltage          |                        |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8     | V       |
| 11  | Low-level input voltage           |                        | 14 - MIN I. = -18 mA                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.2    | V       |
| IK  | Input clamp voltage               |                        | VCC = MIN, II = - 10 HIM                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. A.S. |         |
| IN  |                                   | SN54S226               |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | • •     |
| OH  | High-level output voltage         | SN74S226               |                                                                                                                                                                                | 2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         |
| VOL | Low-level output voltage          |                        | VIL = 0.8 V, IOL = 15 mA                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5     | V       |
| OZH | Off-state output current,         | V <sub>0</sub> = 2.4 V |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μА      |         |
| OZL | Off-state output current,         |                        | Vo = 0.5 V                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -250    | μ.Α<br> |
|     | low-level voltage applied         | ltone                  | VCC = MAX, VI = 5.5 V                                                                                                                                                          | 2           0.1           18 mA           2 V,           10           2 V,           2 V, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |         |
| 4   | Input current at maximum input vo | n tayo                 | Vcc = MAX, VI = 2.7 V                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100     | μA      |
| Чн  | High-level input current          | GAB, GBA               | $V_{CC} = MAX, V_{IH} = 2V,$ $V_{D} = 2.4V$ $V_{CC} = MAX, V_{IH} = 2V,$ $V_{O} = 0.5V$ $V_{CC} = MAX, V_{I} = 5.5V$ $V_{CC} = MAX, V_{I} = 2.7V$ $V_{CC} = MAX, V_{I} = 0.5V$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | _ m     |
|     | Low-level input current           | All other inputs       | VCC = MAX, VI = 0.5 V                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | -       |
| 4L  |                                   | All Other hipots       | Voc = MAX                                                                                                                                                                      | -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>0.8<br>-1.2<br>2.4 3.3<br>2.4 2.9<br>0.5<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>1<br>100<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-250<br>-1.2<br>-50<br>-1.6<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-1.8<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50 | ) m     |         |
| los | Short-circuit output current §    |                        |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 185     | m       |
| 100 | Supply current                    |                        | the second se                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | -       |

‡All typical values are at V<sub>CC</sub> = 5 V, T<sub>A</sub> = 25°C.

§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. NOTES: 2. An SN54S226 in the J package operating at temperatures above 113°C requires a heat-sink that provides a thermal resistance from

case to free air,  $R_{\theta CA}$  of not more than 48°C/W.

3. ICC is measured with all inputs (and outputs) grounded.



......

24 41

3-815

TTL DEVICES

#### TYPES SN54S226, SN74S226 4-BIT PARALLEL LATCHED BUS TRANSCEIVERS

#### switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

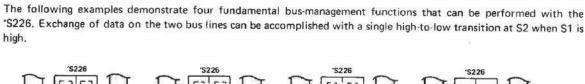
| PARAMETER        | FROM<br>(INPUT)      | TO<br>(OUTPUT) | TEST CON                              | DITIONS     |    | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UNIT     |    |
|------------------|----------------------|----------------|---------------------------------------|-------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|
| tPLH             | A or B               | B or A         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | •           | 20 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> |    |
| TPHL             |                      | B or A         |                                       |             | 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns       |    |
| tPLH             | Select               |                | 1                                     |             | 25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |    |
| TPHL             | Strobe GBA<br>or GAB | Any            | CL = 50 pF, R                         | RL = 280 Ω, | 19 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns       |    |
| TPLH             |                      |                | See Note 4                            |             | 25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |
| <sup>t</sup> PHL |                      | A or B         |                                       |             | 19 | 10 ST-761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns       |    |
| tPZH             | Output Control       | A or B         | 1                                     |             | 12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7      |    |
| tPZL .           | OCBA or OCAB         | OCBA or OCAB   | A or B                                |             |    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | ns |
| tPHZ             | Output Control       |                | CL = 5 pF,                            | RL = 280 Ω, | 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |    |
| tPLZ             | OCBA or OCAB         | A or B         | See Note 4                            |             | 10 | 1. A. | ns       |    |

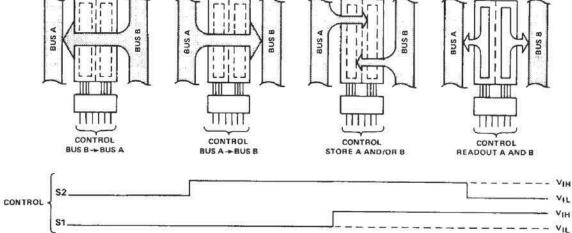
 $t_{PLH} \equiv propagation delay time, low-to-high-level output$ 

tpHL = propagation delay time, high to low level

tpZH ≡ output enable time to high level

 $t_{PZL} \equiv output enable time to low level$ 


tpHZ ≡output disable time from high level


 $t_{PLZ} \equiv output disable time from low level$ 

NOTE 4: See General Information Section for load circuits and voltage waveforms.

#### applications

M TTL DEVICES







\*\*\*\*\*