

SN55140, SN55141, SN55142A, SN55143A SN75140, SN75141, SN75142A, SN75143A

Dual Line Receivers

Each of these devices consists of a dual single-ended line receiver with TTL-compatible strobes and outputs. The reference voltage (switching threshold) is applied externally and can be adjusted from 1.5 volts to 3.5 volts, making it possible to optimize noise immunity for a given system design. A 2.5-volt internal reference is available for use on the '142A and '143A. Due to their low input current (less than 100 microamperes), they are ideally suited for party-line (bus-organized) systems.

The '140 has a common reference voltage pin and a common strobe. The '141 is the same as the '140 except that the input stage is diode protected. Each receiver of the '142A has an individual reference voltage pin and an individual strobe. The '143A is the same as the '142A except that the input stage is diode protected. The internal reference voltage of the '142A and '143A can be externally adjusted with a single resistor from 1.5 volts to 3.5 volts.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

INTERFACE CIRCUITS

TYPES SN55140, SN55141, SN55142A, SN55143A, SN75140, SN75141, SN75142A, SN75143A DUAL LINE RECEIVERS

BULLETIN NO. DL-S 12456, JANUARY 1977-REVISED JULY 1979

features common to all eight types

- Single 5-V Supply
- ±100 mV Sensitivity
- For Application As: Single-Ended Line Receiver Gated Oscillator Level Comparator
- Adjustable Reference Voltage
- TTL Outputs
- TTL-Compatible Strobe
- Designed for Party-Line (Data-Bus) Applications

features of '140 and '141

- Common Reference Pin
 - Common Strobe
 - '141 Has Diode-Protected Input Stage for Power-Off Condition

features of '142A and '143A

- Individual Reference Pins
- Common and Individual Strobes
- Internal 2.5-Volt Reference Available
- '143A Has Diode-Protected Input Stage for Power-Off Condition

COMPANY STRODE

SN55142A, SN55143A...J DUAL-IN-LINE PACKAGE SN75142A, SN75143A...J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

description

Each of these devices consists of a dual single-ended line receiver with TTL-compatible strobes and outputs. The reference voltage (switching threshold) is applied externally and can be adjusted from 1.5 volts to 3.5 volts, making it possible to optimize noise immunity for a given system design. A 2.5-volt internal reference is available for use on the '142A and '143A. Due to their low input current (less than 100 microamperes), they are ideally suited for partyline (bus-organized) systems.

The '140 has a common reference voltage pin and a common strobe. The '141 is the same as the '140 except that the input stage is diode protected. Each receiver of the '142A has an individual reference voltage pin and an individual strobe. The '143A is the same as the '142A except that the input stage is diode protected. The internal reference voltage of the '142A and '143A can be externally adjusted with a single resistor from 1.5 volts to 3.5 volts.

(140, '141 FUNCTION TABLE

(EACH RECEIVER)						
LINE INPUT	STROBE	OUTPUT				
< V _{ref} - 100 mV	L	н				
> Vref + 100 mV	x	L				
×	н	L				

H = high level, L = low level, X = irrelevant

NC-No internal connection

Pin 2, if unused, must be grounded when replacing '142 or '143 with '142A or '143A devices.

'142A, '143A FUNCTION TABLE (EACH RECEIVER)

LINE	INDIVIDUAL	COMMON	OUTPUT	
INPUT	STROBE STROBE		OUIFUI	
< V _{REF} - 100 mV	L	L	н	
> V _{BEF} + 100 mV	×	×	L	
x	н	×	L	
x	x	н	L	
here in the second s				

H = high level, L = low level, X = irrelevant

Copyright © 1979 by Texas Instruments Incorporated

schematic (each receiver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Cushundham Man (see Note 1)		v
Supply voltage, VCC (see Note 1)	5.5	v
Reference input voltage, Vref	2	· v
Line input voltage with respect to ground	2 V to 5.5) V
Line input totage with respect to V	[±]	5 V
Line input voltage with respect to vref	5.5	5 V
Strobe input voltage		IN
Continuous total dissipation at (or below) 25°C free-air temperature (se	e Note 2)	nvv
Continuous total dissipation range: SN55' Circuits		ъ́С
Operating free-air temperature range. Sitos Sitos Sitos to the	0°C to 70	°C
SN75 Circuits		00
Storage temperature range		10
to the seconds: J or JG package)°C
Lead temperature 1/10 Inch from case for 00 seconds: 0 or 00 periods)°C
Lead temperature 1/16 inch from case for 10 seconds: N or P package		

NOTES: 1. Unless otherwise specified, voltage values are with respect to network ground terminal.

 For operation above 25°C free-air temperature, see the Dissipation Derating Table. In the J and JG package, these chips are glass mounted.

DISSIPATION DERATING TABLE

	POWER	DERATING	ABOVE	
PACKAGE	RATING	FACTOR	TA	
1	600 mW	8.2 mW/°C	77°C	
JG	600 mW	6.6 mW/°C	59°C	
N	600 mW	9.2 mW/°C	85°C	
P	600 mW	8.0 mW/°C	75°C	

recommended operating conditions

		SN55' CIRCUITS			SN75' CIRCUITS			LIMIT
		MIN	NOM	MAX	MIN	NOM	MAX	
O		4.5	5	5.5	4.5	5	5.5	V
Supply voltage, VCC		1.5		3.5	1.5		3.5	V
Heterence input voltage, v ref	Line	0		Vcc-1	0		Vcc-1	V
Input voltage, VI	Stropa	0		5.5	0		5.5	1
Strobe		-55		125	0		70	°C
Operating free-air temperatur	e, I A						C (12) 05	4

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 5 V \pm 10\%$, $V_{ref} = 1.5 V$ to 3.5 V (unless otherwise noted)

PARAMETER		Participat	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
VIH(L)	High-level line input voltage			V _{ref} + 100			mV	
VIL(L)	Low-level line input v	oltage				V _{ref} - 100	mV	
VIH(S)	High-level strobe inpu	ut voltage		2	100 255 - 15		V	
VIL(S)	Low-level strobe input	it voltage		1999 (1999) (1999)		0.8	V	
Vон	High-level output voltage		$V_{IL(L)} = V_{ref} - 100 \text{ mV}, V_{IL(S)} = 0.8 \text{ V},$ $I_{OH} = -400 \ \mu\text{A}$	2.4			v	
			VIH(L) = V _{ref} + 100 mV, VIL(S) = 0.8 V, IOL = 16 mA			0.4		
VOL	Low-level output voltage		V _{IL(L)} = V _{ref} - 100 mV, V _{IH(S)} = 2 V, I _{OL} = 16 mA			0.4	v	
VIK(S)	Strobe input clamp v	oltage	II(S) = -12 mA		11423	-1.5	V	
lue	Strobe input current at maximum input voltage	Strobe	VI(S) = 5.5 V			1	mA	
1(5)		Com strb				2	eriskii/seis	
	High-level input current	Strobe	b V1(S) = 2.4 V			40		
		Com strb			-	80]	
Чн		Line input	VI(L) = 3.5 V, Vref = 1.5 V		35	100	μA	
		Reference	V _{1(L)} = 0 V, V _{ref} = 3.5 V	1997 1997 - 1997	35	100		
		Com ref			70	200		
	Low-level	Strobe Com strb	Num - OAN		- 255) 	-1.6	mA	
			VI(S) = 0.4 V			-3.2	1000	
hL.		Line input	VI(L) = 0 V, Vref = 1.5 V			-10		
		Reference	- VI(L) = 1.5 V, V _{ref} = 0 V			-10	μA	
		Com ref				-20		
	Internal reference generator voltage	'142A,	V _{CC} = 5 V, I _{gen} = 0	2.3	2.5	2.7	v	
vgen		'143A	V _{CC} = 5 V, I _{gen} = -70 μA		2.4			
los	Short-circuit output	current‡	V _{CC} = 5.5 V	-10	- 447 - 17 - 17 - 17 - 17 - 17 - 17 - 17	-55	mA	
ICCH	Supply current, outp	ut high	$V_{I(S)} = 0 V, V_{I(L)} = V_{ref} - 100 mV$	i - Britshillini	18	30	mA	
ICCL	Supply current, outp	ut low	$V_{I(S)} = 0 V, V_{I(L)} = V_{ref} + 100 mV$		20	35	mA	

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [‡]Only one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, V_{ref} = 2.5 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH(L)	Propagation delay time, low-to- high-level output from line input			22	35	
tPHL(L)	Propagation delay time, high-to- low-level output from line input	CL = 15 pF, RL = 400 Ω, See Figure 1		22	30	115
tPLH(S)	Propagation delay time, low-to- high-level output from strobe input			12	22	
tphl(S)	Propagation delay time, high-to- low-level output from strobe input			8	15	THE

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

- NOTES: A. Input pulses are supplied by generators having the following characteristics: PRR = 1 MHz, duty cycle < 50%, Z_{out} ≈ 50 Ω. B. Unused strobe(s) is (are) to be grounded.
 - C. CL includes probe and jig capacitance.
 - D. All diodes are 1N3064.

TYPICAL CHARACTERISTICS

TEXAS INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

high fan-out from standard TTL gate

[†]Although most Series 54/74 circuits have a guaranteed 2.4-V output at 400 μA, they are typically capable of maintaining a 2.4-V output level under a load of 7.5 mA.

dual bus transceiver

Using this arrangement, as many as 100 transceivers can be connected to a single data bus. The adjustable reference voltage feature allows the noise margin to be optimized for a given system. The complete dual bus transceiver (SN75453B driver and SN75140 receiver) can be assembled in approximately the same space required by a single 16-pin package, and only one power supply is required (+5 V). Data In and Data Out terminals are TTL compatible.

TYPICAL APPLICATION DATA

Slowly changing input levels from data lines, optical detectors, and other types of transducers may be converted to standard TTL signals with this Schmitt trigger circuit. R1, RF, and RT may be adjusted for the desired hysteresis and trigger levels.

gated oscillator

TEXAS INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

level detector

VOLTAGE TRANSFER CHARACTERISTICS WITH STROBES LOW

