

Features

- Low On-Resistance
- Fast Switching Speed
- Low-voltage drive
- Easily designed drive circuits
- We declare that the material of product is ROHS compliant.
- ESD Protected:2000V

Absolute Maximum Ratings

Parameter	Symbol	Max	Unit
Drain-Source Voltage	V_{DSS}	60	V
Gate-Source Voltage	V_{GSS}	±20	V
Drain Current (Continuous) (T _A =25°C)	250	mA	
Drain Current (Pulse)	I _{DM} *1	1.6	Α
Power Dissipation ($T_A=25^{\circ}C$)	P _D *2	225	mW
Operating Temperature / Storage Temperature	$T_{\rm J}/T_{\rm STG}$	-55/150	°C

*1 Pw \leq 10 µs, Duty cycle \leq 1 %

*2 When mounted on a 1*0.75*0.062 inch glass epoxy board%

Packaging Type

Ordering information

ACE1532B <u>XX</u> + H

ACE1532B N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics

 $(T_A=25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Static									
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =10uA	60			V			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{DS}=250$ uA	1.0	1.85	2.5				
Gate Leakage Current	I _{GSS}	$V_{DS}=0V, V_{GS}=\pm 20V$			10	uA			
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =60V, V_{GS} =0V			1	uA			
Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =0.5A			7.5	Ω			
		V_{GS} =5V, I _D =0.05A			7.5				
Forward Transconductance	gfs*	V _{DS} =10V,I _D =0.5A		15		S			
Switching									
Turn-On Time	td(on)*	V_{GS} =10V, I _D =0.19A, V _{DS} =30V, R _L =155Ω		12		nS			
Turn-Off Time	td(off)*			20					
Dynamic									
Input Capacitance	Ciss	- V _{GS} =0V, V _{DS} =25V, f=1MHz		52		pF			
Output Capacitance	Coss			7.7					
Reverse Transfer Capacitance	Crss			3.9					

* Pw $~\leq~$ 300 µs, Duty cycle $~\leq~$ 1%

ACE1532B N-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics

ACE1532B N-Channel Enhancement Mode Field Effect Transistor

Packing Information

SOT-23-3

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/