

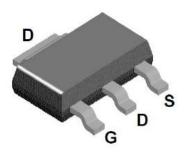
ACE1543B

P-Channel Enhancement Mode Field Effect Transistor

Description

This P-Channel enhancement mode power FETs are produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

Features

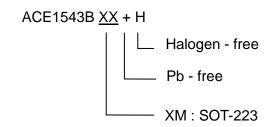

- VDs(V) =-30V
- I_D=-4.5A
- RDS(ON)= $68m\Omega$ @ V_{GS}=-10V
- RDS(ON)=83m Ω @ V_{GS}=-4.5V
- High density cell design for low RDS(ON)

Absolute Maximum Ratings

Absolute Maximum Natings				
Parameter	Symbol	Max	Unit	
Drain-Source Voltage	V_{DSS}	-30	٧	
Gate-Source Voltage	V_{GSS}	±20	٧	
Continuous Drain Current * AC	T _A =25°C		-4.5	Α
	T _A =70°C	l _D	-3.6	
Pulsed Drain Current * B	I _{DM}	-20	Α	
Power Dissipation T _A =25°C		P _D	2	W
Operating Junction Temperature / Storage Temperature Range			-55/150	οС

Packaging Type

SOT-223



ACE1543B

P-Channel Enhancement Mode Field Effect Transistor

Ordering information

Electrical Characteristics

 $T_A=25^{\circ}C$, unless otherwise specified.

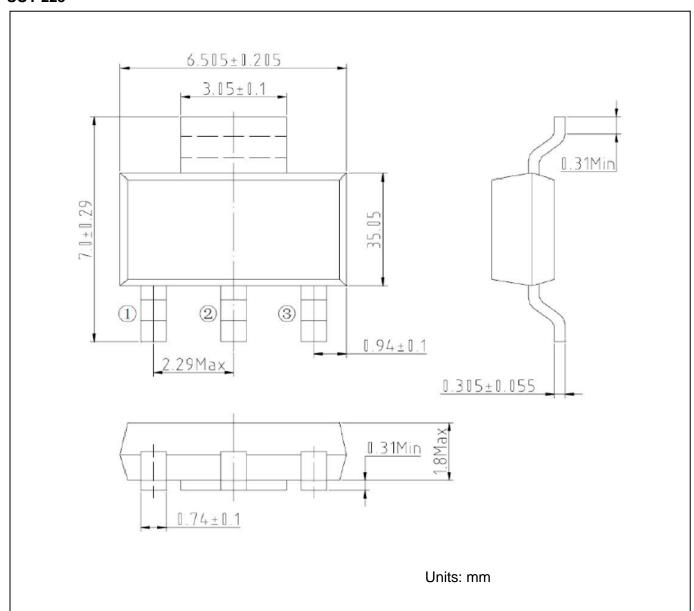
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Static									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250 uA	-30	-34		V			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{DS}=-250uA$	-1	-1.4	-3				
Gate Leakage Current	I_{GSS}	V_{DS} =0 V , V_{GS} =±20 V			100	nA			
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-30V, V_{GS} =0V			-1	uA			
Drain-Source On-Resistance	R _{DS(ON)}	V_{GS} =-10V, I_D =-6A		48	68	mΩ			
		V_{GS} =-4.5V, I_D =-4A		63	83				
Forward Transconductance	gfs	V_{DS} =-5 V , I_D =-6 A		12		S			
Diode Forward Voltage	V_{SD}	I_{SD} =-1A, V_{GS} =0V		-0.81		V			
Switching									
Total Gate Charge	Q_g	V _{DS} =-15V, V _{GS} =-10V, I _D =-4.9A		18.3	23.8	nC			
Gate-Source Charge	Q_{gs}			2.4	3.2				
Gate-Drain Charge	Q_{gd}			3.1	4.1				
Turn-On Time	td(on)	V_{GS} =-10V, R_{GEN} =6 Ω , V_{DS} =-15V, R_L =15 Ω		12.4	24.8	nS			
Turn-Off Time	td(off)			41.1	82.2				
Dynamic									
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =-15V, f=1MHz		971.5		pF			
Output Capacitance	Coss			235.1					
REVERSE Transfer Capacitance	Crss			82.7					

Note:


- 1. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with $T_A=25\,^{\circ}\text{C}$. The value in any given application depends on the user's specific board design.
- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

P-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics



ACE1543B

P-Channel Enhancement Mode Field Effect Transistor

Packing Information

SOT-223

ACE1543B P-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/