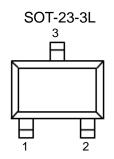


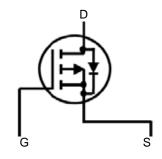
P-Channel Enhancement Mode Field Effect Transistor

Description

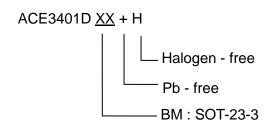
This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits, and low in-line power dissipation are needed in a very small outline surface mount package Excellent thermal and electrical capabilities.


Features

- VDS(V)=-30V, I_D=-3A
- RDS(ON)< $63m\Omega$ @ $V_{GS}=-10V$
- Voltage controlled p-channel small signal switch
- High density cell design for low R_{DS(ON)}


Absolute Maximum Ratings

- 10 - 0 - 10 - 10 - 10 - 10 - 10 - 10									
Parameter		Symbol	Max	Unit					
Drain-Source Voltage		V_{DSS}	-30	V					
Gate-Source Voltage		V_{GSS}	±12	V					
Drain Current	T _A =25 °C	1	-3	Α					
	T _A =70 °C	I _D	-2.4						
Drain Current (Pulse)		I _{DM}	-30	Α					
Continuous Power Dissipation		P _D	500	mW					
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to 150	°С					


Packaging Type

SOT-23-3	Description		
1	Gate		
2	Source		
3	Drain		

Ordering information

ACE3401D

P-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics

 T_A =25 $^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Off characteristics									
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-30V, V_{GS} =0V			-1	uA			
Gate-Body Leakage, Forward	I_{GSSF}	V _{GS} =-20V			-100	nA			
Gate-Body Leakage, Reverse	I_{GSSR}	V _{GS} =20V			100	nA			
	On ch	naracteristics							
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-4.2A			63	mΩ			
		V_{GS} =-4.5V, I_D =-4A			75				
		V_{GS} =-2.5V, I_D =-1A			120				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-0.7	-1.0	-1.3	V			
Switching characteristics ⁽³⁾									
Turn-On Delay Time	$T_{d(on)}$	V_{DD} =-15V,R _L =3.6Ω V_{GS} =-10V, R _{GEN} =6Ω		6.5		ns			
Turn-On Rise Time	t _f			3.5					
Turn-Off Delay Time	$t_{d(off)}$			40					
Turn-Off Fall Time	t _f			13					
Dynamic characteristics ⁽³⁾									
Input Capacitance	C _{iss}	V _{DS} =-30V, V _{GS} =0V f=200KHz		600		pF			
Output Capacitance	C _{oss}			85					
Reverse Transfer Capacitance	C _{rss}			566					
Drain-source diode characteristics and maximum ratings									
Body Diode Forward Voltage	V_{SD}	V_{SD} =0V, I_{S} =-1A		-0.78	-1	V			

Note:

- 1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while R θ CA is determined by the user's board design.
- 2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

P-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics

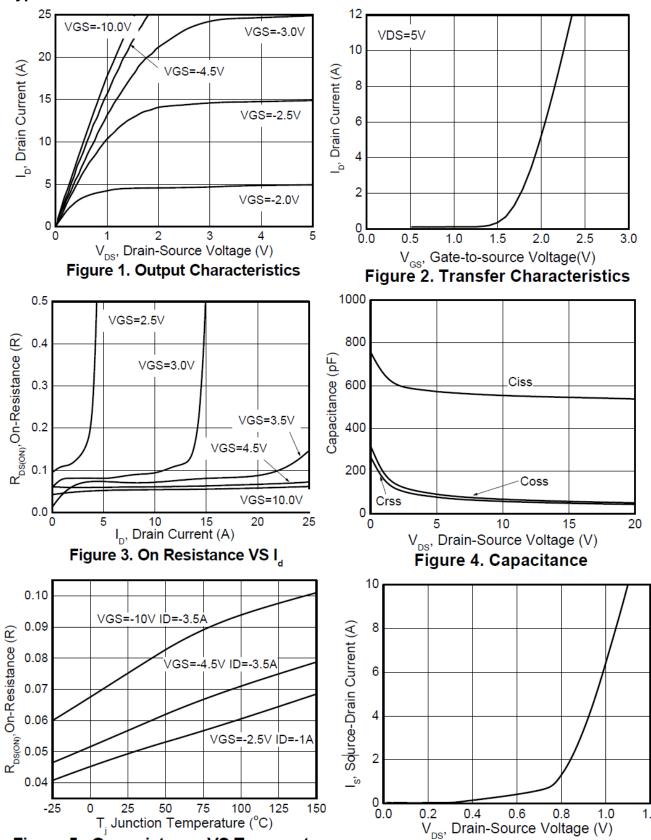
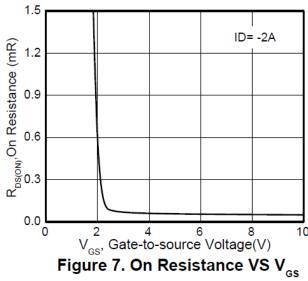


Figure 5 . On-resistance VS Temperature

Figure 6. Body Diode Characteristics


3

ACE3401D

P-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics

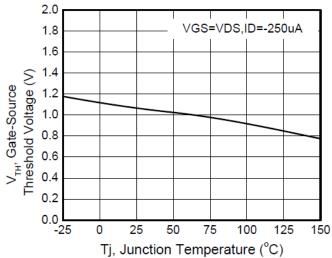
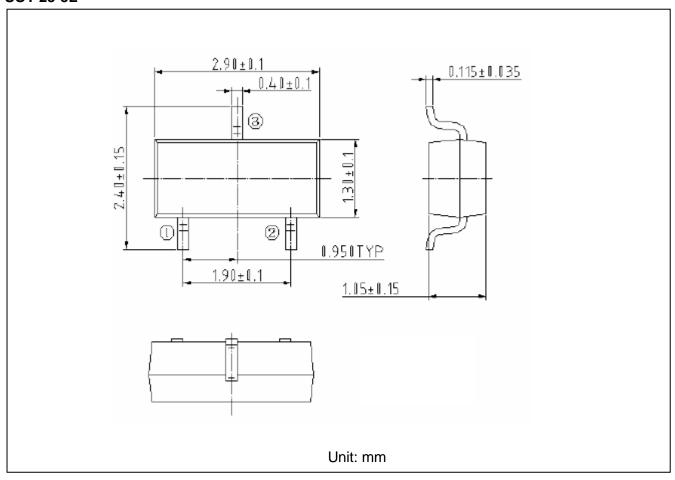


Figure 8. Gate Threshold Vs. Temperature



P-Channel Enhancement Mode Field Effect Transistor

Packing Information

SOT-23-3L

ACE3401D

P-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/