

2.6 Watt Mono Filter-Free Class-D Audio Power Amplifier

Features

 \Box Efficiency With an 8- Ω Speaker:

88% at 400 mW

80% at 100 mW

- **Q** 2.1mA Quiescent Current
- Deptimized PWM Output Stage Eliminates LC Output Filter
- □ Internally Generated 250-kHz Switching Frequency Eliminates Capacitor and Resistor
- □ Improved PSRR (-75 dB) and Wide Supply Voltage (2.5 V to 5.5 V) Eliminates Need for a Voltage Regulator
- □ Fully Differential Design Reduces RF Rectification and Eliminates Bypass Capacitor
- □ Improved CMRR Eliminates Two Input Coupling Capacitors
- □ MSOP8, SOP8, DFN8 package

General Description

The BL6305 is a 2.6W high efficiency filter-free class-D audio power amplifier that requires only three external components.

Features like 88% efficiency, -75dB PSRR, and improved RF-rectification immunity make the BL6305 ideal for cellular handsets. In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the BL6305.

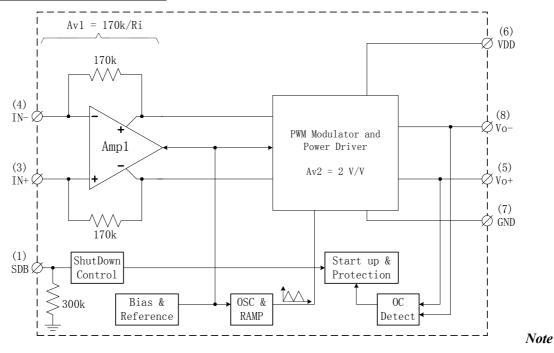
Applications

- □ Mobile phone、PDA
- □ MP3/4、PMP
- □ Portable electronic devices

Order Information

Part Number	Package	Shipping
BL6305MM	MSOP8	3000 pcs / Tape & Reel
BL6305DN	DFN8	3000 pcs / Tape & Reel
BL6305SO	SOP8	2500 pcs / Tape & Reel

<u> Pin Diagrams</u>


BL6305

DFN8 PACKAGE (TOP VIEW)			SOP8/MSOP8 PACKAGE (TOP VIEW)	
SDB NC IN+ IN-	1) 2) 3) 4)	8 Vo- 6 VDD 5 Vo+		

Pin Description

Pin #	Name	Description
1	SDB	Shutdown terminal (low active)
2		NC (No internal connection)
3	IN+	Positive differential input
4	IN-	Negative differential input
5	VO+	Positive BTL output
6	VDD	Power Supply
7	PGND	Power Ground
8	VO-	Negative BTL output

Function Block Diagram

s: Total Voltage Gain =
$$Av1 \times Av2 = 2 \times \frac{170k}{R_1}$$

Figure 1. Function Block Diagram

Application Circuit

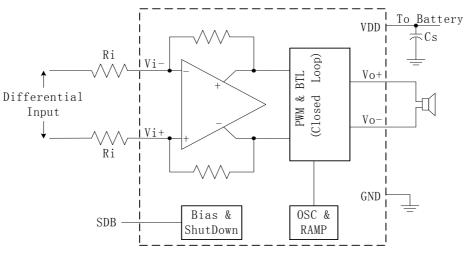


Figure 2. BL6305 Application Schematic With Differential Input

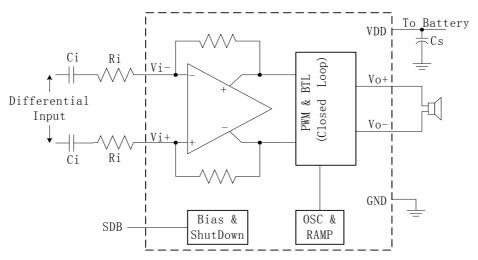


Figure 3. BL6305 Application Schematic With Differential Input and Input Capacitors

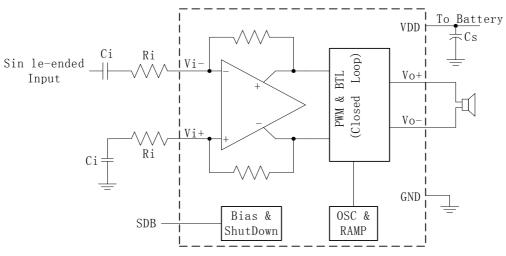


Figure 4. BL6305 Application Schematic With Single-Ended Input

Electrical Characteristics

The following specifications apply for the circuit shown in Figure 5.

 $T_A = 25$, unless otherwise specified.

Sh al	Parameter	Conditions		TI		
Symbol	I al ameter	Conditions	Min.	Тур.	Max.	Units
I _{SD}	Shutdown Current	V _{IN} =0V, V _{SDB} =0V, No Load		0.4	2	uA
		$V_{DD} = 2.5 V$, $V_{IN} = 0 V$, No Load		1.8	3.2	
I _Q	Quiescent Current	V_{DD} = 3.6V, V_{IN} = 0V, No Load		2.1		mA
		V_{DD} = 5.5V, V_{IN} = 0V, No Load		2.5	4.5	
$ V_{OS} $	Output Offset Voltage	$V_{IN} = 0V, A_V = 2V/V,$ $V_{DD} = 2.5V$ to 5.5V		2	25	mV
PSRR	Power Supply Rejection Ratio	$V_{DD} = 2.5 V$ to 5.5 V		-75		dB
CMRR	Common Mode Rejection Ratio	$V_{DD} = 2.5V \text{ to } 5.5V,$ $V_{IC} = V_{DD}/2 \text{ to } 0.5V,$ $V_{IC} = V_{DD}/2 \text{ to } V_{DD} - 0.8V$		-68		dB
F_{SW}	Modulation frequency	$V_{DD} = 2.5V$ to 5.5V	200	250	300	kHz
$A_{\rm V}$	Voltage gain	$V_{DD} = 2.5 V$ to 5.5 V	$\frac{320k}{R_{I}}$	$\frac{340k}{R_{I}}$	$\frac{360k}{R_{I}}$	V/V
R _{SDB}	Resistance from SDB to GND			300		kΩ
ZI	Input impedance		160	170	180	kΩ
T _{WU}	Wake-up time from shutdown	$V_{DD} = 3.6V$		1		mS
		$V_{DD} = 2.5 V$		700		
r _{DS(on)}	Drain-Source resistance (on-state)	$V_{DD} = 3.6V$		500		mΩ
		$V_{DD} = 5.5 V$		400		

Operating Characteristics

 \Box V_{DD} = 5V, R_I = 150k Ω , T_A = 25 , unless otherwise specified.

Symbol	Parameter	Conditions	Spec			Units
Symbol		Conditions	Min.	Тур.	Max.	Units
D		THD+N=10%, f=1KHz, $R_L = 4\Omega$		2.65		
	Output Power	THD+N=1%, f=1KHz, $R_L = 4\Omega$		2.15		W
Po		THD+N=10%, f=1KHz, $R_L = 8\Omega$		1.65		
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		1.33		
THDIN	Total Harmonic	$\mathbf{D}_{\mathbf{r}} = 1.0 \mathbf{W}_{\mathbf{r}}$		0.21		%
THD+N	Distortion + Noise	Po=1.0Wrms, f=1kHz, $R_L = 8\Omega$		0.21		%0
SNR	Signal-to-Noise ratio	V_{DD} =5V, Po=1.0Wrms, R_L = 8 Ω		95		dB

D $V_{DD} = 3.6V$, $R_I = 150k\Omega$, $T_A = 25$, unless otherwise specified.

Symbol	Parameter	Conditions	Spec			Units
			Min.	Тур.	Max.	Units
	THD+N=10%, f=1KHz, $R_L = 4\Omega$		1.35			
р	Output Power	THD+N=1%, f=1KHz, $R_L = 4\Omega$		1.08		W
P _O		THD+N=10%, f=1KHz, $R_L = 8\Omega$		0.85		vv
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		0.69		

BL6305

THD+N	Total Harmonic Distortion + Noise	Po=0.5Wrms, f=1kHz, $R_L = 8\Omega$		0.21	%	
K _{SVR}		V_{DD} = 3.6V, input ac-grounded f=217Hz, V(Ripple)=200mV_{PP}	-67	dB		
V		V_{DD} = 3.6V, input ac-grounded	No weighting	87	V	
V _n	Output voltage noise	with $C_I = 2uF$, f=20~20kHz A weighting		65	uV _{RMS}	
CMBB Common Mode		V = 2 (V V = 1 V = 217 U		-70	dB	
CMRR	Rejection Ratio	$V_{DD} = 3.6V, V_{IC} = 1 V_{PP}, f=217Hz$		-70	μĎ	

\Box V_{DD} = 2.5V, R_I = 150k Ω , T_A = 25 , unless otherwise specified.

Symbol	Parameter	Conditions	Spec			Units
Symbol			Min.	Тур.	Max.	Units
	Output Power	THD+N=10%, f=1KHz, $R_L = 4\Omega$		0.63		
D		THD+N=1%, f=1KHz, $R_L = 4\Omega$		0.51		W
Po		THD+N=10%, f=1KHz, $R_L = 8\Omega$		0.40		
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		0.33		
	Total Harmonic			0.21		0/
THD+N	Distortion + Noise	Po=0.2Wrms, f=1kHz, $R_L = 8\Omega$		0.21		%

<u>Test Circuit</u>

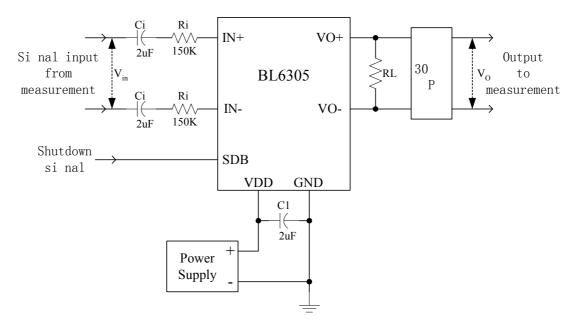


Figure 5. BL6305 test set up circuit

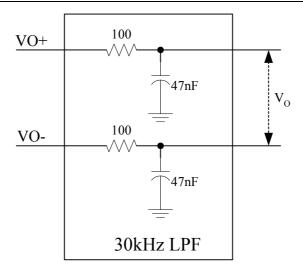


Figure 6. 30-kHz LPF for BL6305 test

Notes: 1>. C_S should be placed as close as possible to VDD/GND pad of the device

2>. Ci should be shorted for any Common-Mode input voltage measurement

3>. A 33uH inductor should be used in series with R_L for efficiency measurement

4>. The 30 kHz LPF (shown in figure 5) is required even if the analyzer has an internal LPF

Component Recommended

Due to the weak noise immunity of the single-ended input application, the differential input application should be used whenever possible. The typical component values are listed in the table:

R _I	CI	Cs
150 k	3.3 nF	2 uF

(1) C_I should have a tolerance of $\pm 10\%$ or better to reduce impedance mismatch.

(2) Use 1% tolerance resistors or better to keep the performance optimized, and place the R_I close to the device to limit noise injection on the high-impedance nodes.

Input Resistors (R_I) & Capacitors (C_I)

The input resistors (R_I) set the total voltage gain of the amplifier according to Eq1

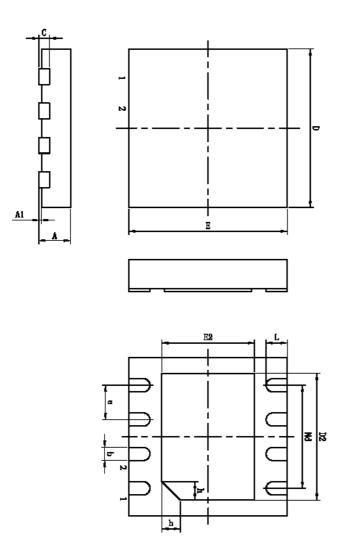
$$Gain = \frac{2 \times 170 k\Omega}{R_I} \quad \left(\frac{V}{V}\right) \qquad \qquad Eq1$$

The input resistor matching directly affects the CMRR, PSRR, and the second harmonic distortion cancellation.

If a differential signal source is used, and the signal is biased from $0.5V \sim V_{DD}$ -0.8V (shown in Figure2), the input capacitor (C₁) is not required.

If the input signal is not biased within the recommended common-mode input range in differential input application (shown in Figure3), or in a single-ended input application (shown in Figure4), the input coupling capacitors are required.

If the input coupling capacitors are used, the R_I and C_I form a high-pass filter (HPF). The corner frequency (f_C) of the HPF can be calculated by *Eq2*

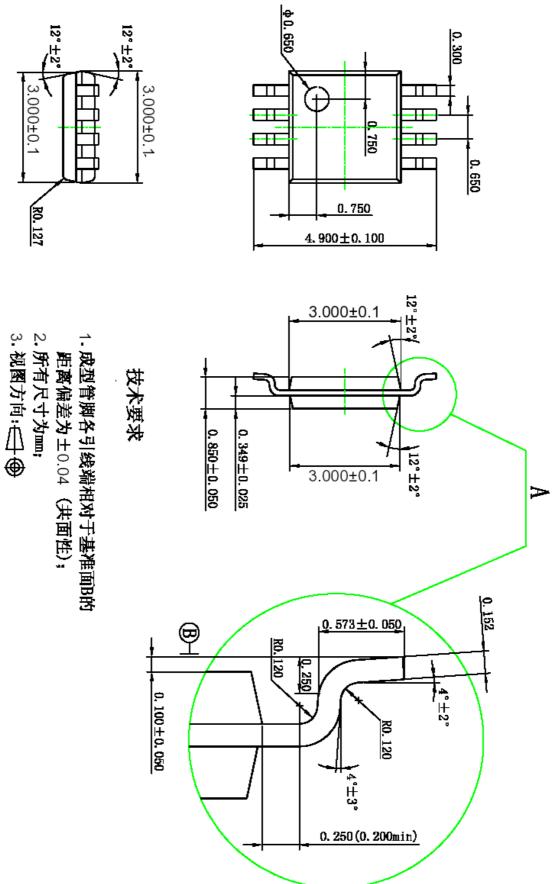

$$f_C = \frac{1}{2\pi \cdot R_I \cdot C_I} \quad (Hz) \qquad Eq2$$

Decoupling Capacitor (C₈)

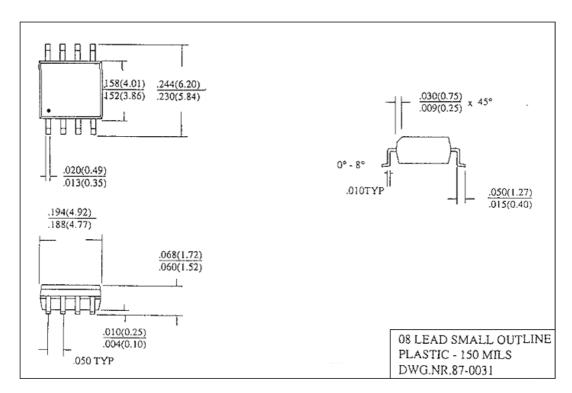
A good low equivalent-series-resistance (ESR) ceramic capacitor (C_s), used as power supply decoupling capacitor (C_s), is required for high power supply rejection (PSRR), high efficiency and low total harmonic distortion (THD). Typically C_s is 2μ F, placed as close as possible to the device VDD pin.

Package Dimensions

DFN8



SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
А	0.70	0.75	0.80	
Al	-	0.02	0.05	
b	0.25	0.30	0.35	
с	0.18	0.20	0.25	
D	2.90	3.00	3.10	
D2		2.50RE	F	
e		0.65BS	С	
Nd		1.95BS	С	
Е	2.90	3.00	3.10	
E2	1.55REF			
L	0.30	0.40	0.50	
h	0.20	0.25	0.30	


MSOP8

3.000±0.1

SOP8

