

TC1232

Microprocessor Monitor

Features

- Precision Voltage Monitor
- Adjustable +4.5V or +4.75V
- Reset Pulse Width 250 msec minimum
- No External Components
- Adjustable Watchdog Timer
- 150 msec, 600 msec or 1.2 sec
- Operating Voltage 4.0V to 5.5V
- Debounced Manual Reset Input for External Override

Block Diagram ORSI Tolerance Select TOLOH (5% or 10%) ORS REF Reset Generator PB RSTO → Debounce Watchdog Timebase Watchdog TD O-Timer . ○ ST Select 1

General Description

The TC1232 is a fully-integrated processor supervisor that provides three important functions to safeguard processor sanity: precision power on/off reset control, watchdog timer and external reset override.

On power-up, the TC1232 holds the processor in the reset state for a minimum of 250 msec after V_{CC} is within tolerance to ensure a stable system start-up.

Microprocessor sanity is monitored by the onboard watchdog circuit. The microprocessor must provide a periodic low-going signal on the \overline{ST} input. Should the processor fail to supply this signal within the selected time-out period (150 msec, 600 msec or 1200 msec), an out-of-control processor is indicated and the TC1232 issues a processor reset as a result.

The outputs of the TC1232 are immediately driven active when the PB input is brought low by an external push button switch or other electronic signal. When connected to a push button switch, the TC1232 provides contact debounce.

The TC1232 is packaged in a space-saving 8-Pin PDIP or SOIC package, a 16-Pin SOIC (wide) package and requires no external components.

Package Types

8-Pin PDIP	8-Pin SOIC	16-Pin SOIC (Wide)
PB RST 1 • 8 TD 2 TOL 3 GND 4 5	PB RST 1 TD 2 TOL 3 T GND GND 4	NC 1 16 NC PB RST 2 15 VCC NC 3 5T 13 ST TD 4 NC 13 ST 12 NC TOL 6 11 RST 10 NC 11 RST MC 7 10 NC 11 RST 10 NC 10

Device Features

Device	RST pin			RST pin			Minimum	WDI Input	MD
	Туре	Pull-up Resistor	Active Level	Туре	Active Level	Trip Points (Max)	Reset Active Time (ms)	Typical Timeouts (ms)	MR Input
TC1232	Open-drain	External	Low	Push-pull	High	4.75V or 4.5V	250	150, 600 or 1200	Yes

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Voltage on Any Pin (With Respect to GND)

-0.3V to +5.8V Operating Temperature Range:

	0			
	C-Vers	ion		0℃ to +70℃
	E-Vers	ion		40℃ to +85℃
Stor	age Ten	nperatu	ure Range:	65℃ to +150℃

† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $T_A = T_{MIN}$ to T_{MAX} ; $V_{CC} = +4.0V$ to 5.5V.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Supply Voltage	V _{CC}	4.0	5.0	5.5	V				
ST and PB RST Input High Level	V _{IH}	2.0	-	V _{CC} +0.3	V	Note 1			
ST and PB RST Input Low Level	V _{IL}	-0.3		+0.8	V				
Input Leakage ST, TOL	١L	-1.0	-	+1.0	μA				
Output Current RST	I _{OH}	-1.0	-12	_	mA	V _{OH} = 2.4V			
Current RST, RST	I _{OL}	2.0	10	—	mA	$V_{OL} = 0.4 V$			
Operating Current	I _{CC}	—	50	200	μA	Note 2			
V _{CC} 5% Trip Point	V _{CCTP}	4.50	4.62	4.74	V	TOL = GND (Note 3)			
V _{CC} 10% Trip Point	V _{CCTP}	4.25	4.37	4.49	V	TOL = V _{CC} (Note 3)			
Capacitance Electrical Characteristics: Unless otherwise noted, $T_A = +25$ °C. (Note 4)									
Input Capacitance ST, TOL	C _{IN}	_	_	5	pF				
Output Capacitance RST, RST	C _{OUT}	_		7	pF				

Note 1: $\overline{PB RST}$ is internally pulled up to V_{CC} with an internal impedance of typically 40 kΩ.

2: Measured with outputs open.

3: All voltages referenced to GND.

4: Ensured by design.

FIGURE 1-1: Rise Time, Fall Time and Reset Detected to Reset Active Timing Waveforms.

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $T_A = T_{MIN}$ to T_{MAX} ; $V_{CC} = +4.0V$ to 5.5V.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
V _{CC} Fall Time	t _F	10			μs	Note 1		
V _{CC} Rise Time	t _R	0			μs	Note 1		
V _{CC} Trip Point Detected to RST High and RST Low	t _{RPD}		Ι	100	ns	V _{CC} falling		
V _{CC} Trip Point Detected to RST High and RST Open	t _{RPU}	250	610	1000	ms	V _{CC} rising (Note 2)		

Note 1: Ensured by design.

2: $t_R = 5 \ \mu s$.

FIGURE 1-2: Push Button Reset and Watchdog Timer Reset Timing Waveforms.

AC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $T_A = T_{MIN}$ to T_{MAX} ; $V_{CC} = +4.0V$ to 5.5V.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
PB RST Pulse Width	t _{PB}	20			ms	Note 1			
PB RST Falling Edge Low to Reset Active	t _{PBD}	1	4	20	ms				
PB RST Rising Edge High to Reset Inactive	t _{RST}	250	610	1000	ms				
ST Pulse Width	t _{ST}	20			ns				
ST Time-out Period	t _{TD}	62.5	150	250	ms	TD Pin = 0V			
		250	600	1000	ms	TD Pin = Open			
		500	1200	2000	ms	TD Pin = V _{CC}			

Note 1: PB RST must be held low for a minimum of 20 ms to ensure a reset.

2.0 TYPICAL PERFORMANCE CURVES

Performance Graphs are not available.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TA

Pin	No.							
8-pin PDIP, SOIC	16-pin SOIC	Symbol	Pin Type	Buffer/ Driver Type	Function			
1	2	PB RST	I	ST	Push-button Reset Input. Input for a Manual Reset Switch. This input debounces (ignores) pulses less than 1 ms in duration and is ensured to recognize inputs of 20 ms or greater. L = Manual Reset Switch is Active, Force RST/RST pins Active H = Manual Reset Switch is Inactive. State of RST/RST pins determined byother system conditions.			
2	4	TD	I	ST	Time Delay Input. The voltage level on this input determines the watchdog timer time-out period. TD = 0V $\rightarrow t_{TD} = 150 \text{ ms}$ TD = Open $\rightarrow t_{TD} = 600 \text{ ms}$ TD = V _{CC} $\rightarrow t_{TD} = 1.2 \text{ sec}$			
3	6	TOL	I	ST	Tolerance Input. TOL = GND, Max Voltage Trip Point (V_{CCTP}) = 4.75V (5% tolerance) TOL = V_{CC} , Max Voltage Trip Point (V_{CCTP}) = 4.5V (10% tolerance)			
4	8	GND	—	Р	The ground reference for the device.			
5	9	RST	0	Push Pull	 Reset Output (Active-High) Goes active (High) if one of these conditions occurs: 1. If V_{CC} falls below the selected reset voltage threshold. 2. If PB RST pin is forced low. 3. If ST pin is not strobed within the minimum selected time-out period. (see TD pin) 4. During power-up 			
6	11	RST	0	Open Drain	 Reset Output (Active-Low) Goes active (Low) if one of these conditions occurs: 1. If V_{CC} falls below the selected reset voltage threshold. 2. If PB RST pin is forced low. 3. If ST pin is not strobed within the minimum selected time-out period. (see TD pin) 4. During power-up 			
7	13	ST	Ι	ST	Strobe Input Input for Watchdog Timer. WDT period determined by state of TD pin Falling Edge \rightarrow Resets Watchdog Timer counter (no time-out)			
8	15	V _{CC}	_	Р	The positive supply (+5V) for the device.			
-	1,3,5, 7,10,1 2,16	NC	-		No internal connection.			

4.0 OPERATIONAL DESCRIPTION

4.1 Power Monitor

The TC1232 provides the function of warning the processor of a power failure. When V_{CC} is detected as being below the voltage levels defined by the TOL pin, the TC1232's comparator outputs the RST and RST signals to a logic level that warns the system of an out-of-tolerance power supply. The RST and RST signals switch at a threshold value of 4.5V if TOL is tied to V_{CC}, and at a value of 4.75 volts if TOL is grounded. The RST and RST signals are held active for a minimum of 250 ms to ensure that the power supply voltage has been stabilized.

Figure 4-1 shows the V_{CC} fall time.

Figure 4-2 shows the V_{CC} rise time.

Figure 4-3 shows the time from when the voltage trip point is detected to the reset output pin going active.

Figure 4-4 shows the time from when the voltage trip point is exited to the reset output pin going inactive.

FIGURE 4-1: Pow

Power-Down Slew Rate.

FIGURE 4-2:

FIGURE 4-3: V_{CC} Detect Reset Output Delay (Power-Down).

FIGURE 4-4: V_{CC} Detect Reset Output Delay (Power-Up).

4.2 Push Button Reset Input

The debounced manual reset input (PB RST) manually forces the reset outputs into their active states. Figure 4-5 shows a block diagram for using the TC1232 with a push button switch.

Once \overline{PB} RST has been low for a time t_{PBD} (the pushbutton delay time), the reset outputs go active. The reset outputs remain in their active states for a minimum of 250 ms after \overline{PB} RST rises above V_{IH}. Figure 4-6 shows a waveform for the push button switch input and the reset pins output.

A mechanical push button or active logic signal can drive the PB RST input. The debounced input ignores input pulses less than 1 ms and recognizes pulses of 20 ms or greater. No external pull-up resistor is required because the PB RST input has an internal pull-up to V_{CC} of approximately 100 µA.

FIGURE 4-5: Push Button Reset and Watchdog Timer.

4.3 Watchdog Timer

When the \overline{ST} input is not stimulated for a preset time period, the watchdog timer function forces RST and RST signals to the active state. The preset time period is determined by the TD inputs to be 150 ms with TD connected to ground, 600 ms with TD floating or 1200 ms with TD connected to V_{CC} (typ.). The watchdog timer starts timing-out from the set time period as soon as RST and RST are inactive. If a highto-low transition occurs on the ST input pin prior to time-out, the watchdog timer is reset and begins to time-out again. If the watchdog timer is allowed to timeout, the RST and RST signals are driven to the active state for 250 ms, minimum (Figure 4-7).

The software routine that strobes \overline{ST} is critical. The code must be in a section of software that is executed frequently enough so the time between toggles is less than the watchdog time-out period. One common technique controls the microprocessor I/O line from two sections of the program. The software might set the I/O line high while operating in the Foreground mode and set it low while in the Background or Interrupt modes. If both modes do not execute correctly, the watchdog timer issues reset pulses.

 t_{TD} is the maximum elapsed time between \overline{ST} high-tolow transitions (\overline{ST} is activated by falling edges only), which will keep the watchdog timer from forcing the reset outputs active for a time of t_{RST} . t_{TD} is a function of the voltage at the TD pin, as tabulated below:

TABLE 4-1: WATCHDOG TIMER PERIODS

	t _{TD}						
Condition	Min	Тур	Max				
TD pin = 0V	62.5 ms	150 ms	250 ms				
TD pin = Open	250 ms	600 ms	1000 ms				
TD pin = VCC	500 ms	1200 ms	2000 ms				

Figure 4-7 shows a block diagram for using the TC1232 with a $\rm PICmicro^{\textcircled{B}}$ MCU and the Watchdog input.

FIGURE 4-7:

Watchdog Timer.

Figure 4-8 shows the expected reset output pin waveforms depending on the period of the \overline{ST} pin falling edge and the state of the TD input pin.

4.4 Supply Monitor Noise Sensitivity

The TC1232 is optimized for fast response to negativegoing changes in V_{DD}. Systems with an inordinate amount of electrical noise on V_{DD} (such as systems using relays) may require a 0.01 μ F or 0.1 μ F bypass capacitor to reduce detection sensitivity. This capacitor should be installed as close to the TC1232 as possible to keep the capacitor lead length short.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

8-Lead Plastic Dual In-line (PA) – 300 mil (PDIP)

	Units	INCHES*			MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		8			8		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32	
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26	
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60	
Overall Length	D	.360	.373	.385	9.14	9.46	9.78	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018

© 2005 Microchip Technology Inc.

8-Lead Plastic Small Outline (OA) - Narrow, 150 mil (SOIC)

	Units		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	р		.050			1.27		
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75	
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55	
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25	
Overall Width	E	.228	.237	.244	5.79	6.02	6.20	
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99	
Overall Length	D	.189	.193	.197	4.80	4.90	5.00	
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51	
Foot Length	L	.019	.025	.030	0.48	0.62	0.76	
Foot Angle	φ	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.013	.017	.020	0.33	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057

16-Lead Plastic Small Outline (OE) – Wide, 300 mil (SOIC)

	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		16			16	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.398	.406	.413	10.10	10.30	10.49
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-102

NOTES:

APPENDIX A: REVISION HISTORY

Revision C (June 2005)

The following is the list of modifications:

- 1. Since no data is given in **Section 2.0 "Typical Performance Curves"**, "Preliminary" was added to the bottom of this document.
- 2. Corrected Operating Voltage in the Electrical Specifications
- 3. General Data Sheet Enhancements
- 4. Added Revision History Appendix Section

Revision B (March 2003)

Not logged

Revision A (March 2002)

• Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>k /xx</u>	Examples:		
Dovice Temp	ereture Beckere	a) TC1232COA:	0℃ to +70℃, 8L-SOIC	
Rai	nge	b) TC1232COA713:	0℃ to +70℃, 8L-SOIC,	
			Tape and Reel	
		c) TC1232COE:	0℃ to +70℃, 16L-SOIC	
Device:	TC1232: Microprocessor Monitor	d) TC1232COE713:	0℃ to +70℃, 16L-SOIC Tape and Reel	
Temperature Range:		e) TC1232CPA:	0℃ to +70℃, 8L-PDIP	
	$C = 0^{\circ}C \text{ to } + 70^{\circ}C$ $F = -40^{\circ}C \text{ to } + 85^{\circ}C$	f) TC1232EOA:	-40℃ to +85℃,	
			8L-SOIC	
Package:		g) TC1232EOA713:	-40℃ to +85℃,	
	PA = Plastic DIP (300 mil Body), 8-lead		8L-SOIC,	
	OA713 = Plastic SOIC, (150 mil Body), 8-lead		Tape and Reel	
	Tape and Reel	h) TC1232EOE:	-40℃ to +85℃,	
	OE = Plastic SOIC (300 mil Body), 16-lead		16L-SOIC	
	Tape and Reel	i) TC1232EOE713:	-40℃ to +85℃,	
			16L-SOIC,	
		N TO 4000ED4		
		J) TC1232EPA:	-40°C to +85°C,	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001.2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

Japan - Kanagawa Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel:011-604-646-8870 Fax:011-604-646-5086

Philippines - Manila Tel: 011-632-634-9065 Fax: 011-632-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup Tel: 45-4450-2828 Fax: 45-4485-2829

France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820

04/20/05