
VFH5070 VCXO High Reliability 5x7mm SMD, CMOS

Features

- > 1MHz to 80MHz frequency range
- > -55°C to +125°C operating temperature range
- <0.2ps RMS jitter over 12kHz to 20MHz</p>
- ➤ Wide APR ±110ppm typ.
- Leadless chip carrier package is hermetically sealed for superior aging and field performance
- Crystal angle controlled to ±0.5 for excellent temperature stability
- ➤ 160 hour Class B burn-in and extensive environmental testing for best performance in rugged field environments
- > Serialized test data available
- ➤ Calculated MTBF is 3.8 x 10⁶ hours

Applications

- Industrial
- Military
- High Temperature

Description:

These high reliability oscillators provide CMOS waveforms for applications subjected to the most stringent environmental conditions. They are mechanically robust and weigh less than 0.2 grams. This 5x7 mm SMD package has a hermetic seal, thus ensuring the integrity of the part. Each oscillator is burned-in at 125°C for 160 hours, temperature cycled and centrifuged then fully tested in accordance with Table 1. Reliability tests are performed per Table 2.

Electrical Specifications

Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Frequency Range	F		1		80	MHz	
Frequency Stability	ΔF/F	Includes operating temperature, change of input voltage, change of load, shock and vibration		± 50 ± 30		ppm	-55°C to +125°C -55°C to +85°C
Aging		First Year After First Year		3 1		ppm ppm/yr	
Pull Range	APR	V _C 1.65 ± 1.65V	±90	±110		nnm	3.3V
Pull Ralige	AFK	$V_{C} 2.5 \pm 2.5 V$	±100	±110		ppm	5.0V
Operating Temperature	Т		-55 -55		+125 +85	°C	See "How to Order"

VFH5070 VCXO High Reliability 5x7mm SMD, CMOS

Electrical Specifications

Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Supply Voltage	V _{CC}		3.0 4.5	3.3 5.0	3.6 5.5	V	
Supply Current	I _{cc}		3.0		5.0	mA	CL=15 pF V _{DD} = 3.6V
Cupply Culton	100		4.0		7.0	111/1	CL=15 pF V _{DD} = 5.5V
Current Consumption	I _{DDD}	CL=15pF, V _{DD} =3.6V, 5.5V OE=0V, F0=27MHz		1	2	mA	@ output disable
Output Off Leak	Ιο	OE=0V			10	μΑ	@ output disable
"H" Input Current	I _{IH}	$V_{IN}=V_{DD}$			1	μΑ	
"L" Input Current	I _{IL}	V _{IN} =V _{SS}		1.3	10	μΑ	
"H" Output Voltage	V_{OH}	I _{OH} =-5mA	V _{DD} -0.4			V	I _{OH} =-3mA
"L" Output Voltage	V_{OL}	I _{OL} =-5mA			0.4	V	I _{OH} =3mA
Rise & Fall Times		CMOS, 15pF	3.0		6.0	ns	+125°C
RMS Jitter 12kHz to 20MHz	1σ			<0.2		ps	
Phase Noise		10Hz 100Hz 1kHz 10kHz 100kHz 1MHz		-65 -94 -120 -142 -155 -159		dBc/Hz	@ 50MHz
Input Impedance	V _{CC} Impedance	Pad 1, V _C	5* 100			MOhm KOhm	Order Code H * Order Code B
Start-up Time	Ts				5	ms	
Duty Cycle		CMOS @50% V _{DD}		48/52	45/55	%	
Control Voltage	V_{CC}		0		3.3 5.0	٧	3.3V 5.0V
Modulation Bandwidth	F _C		15 15	20 20		kHz	3.3V 5.0V
Pulling Linearity	F _{LIN}			10	15	%	0.0 V
Tristate	Input HIGH (Input LOW (<		ACTIVE HIGH IMP	EDANC	E		

^{*}Available for 3.3V only.

VFH5070 **VCXO** High Reliability 5x7mm SMD, CMOS

Absolute Maximum Rating

Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Supply Voltage	V_{DD}		V _{SS} -0.5		7	V	
Input Voltage	V_{IN}	All Input Pin	V _{SS} -0.5		V _{DD} +0.5	V	
Output Voltage	V_{OUT}		V _{SS} -0.5		V _{DD} +0.5	V	
Power Dissipation	I _{OUT}				30	mA	
ESD		MM		±200			
		HBM		±2000			

Environmental and Mechanical Conditions

Parameter	Conditions			
Shock	1000 Gs, 0.35 ms, ½ sine wave, 3 shocks in each plane			
Vibration	10-2000 Hz of 0.06" d.a. or 20Gs, whichever is less			
Humidity	Resistant to 85° R.H. at 85°C			
Leak	Per MIL-STD-883, Method 1014, Condition A and Condition C			
Case	Hermetically sealed ceramic LCC			
Pads	39 microinch of gold over nickel			
Resistance to Solvents	Per MIL-STD-202, Method 215			
Marking	Epoxy ink or laser engraved			

Table 1

Each unit undergoes the following:

Internal Visual

Stabilization Bake MIL-STD-883 Method 1008, COND. B Temperature Cycling MIL-STD-883 Method 1010, COND. B Constant Acceleration MIL-STD-883 Method 2001, COND. A Fine Leak MIL-STD-883 Method 1014, COND. A MIL-STD-883 Method 1014, COND. C **Gross Leak** Burn-in MIL-STD-883 Method 1015, COND. B (125°C for 160 hours with bias)

The following electrical test is performed at 25°C

Current Frequency at 3.65V Frequency at 3.0V Rise Time Fall Time "Zero" logic level "One" logic level **Duty Cycle**

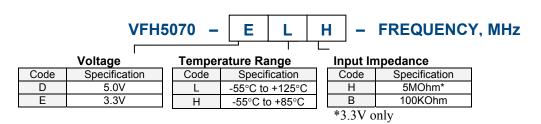
Tristate

Frequency (also preferred at temp extremes)

Serialized test data on each unit available upon request for additional cost

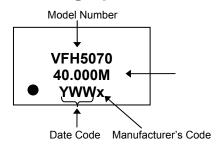
Thermal Characteristics

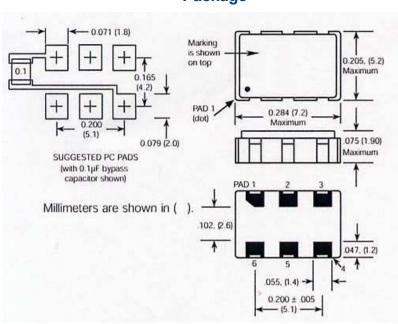
Thermal Resistance


From Junction to Case, RØjc 16 °C/Watt

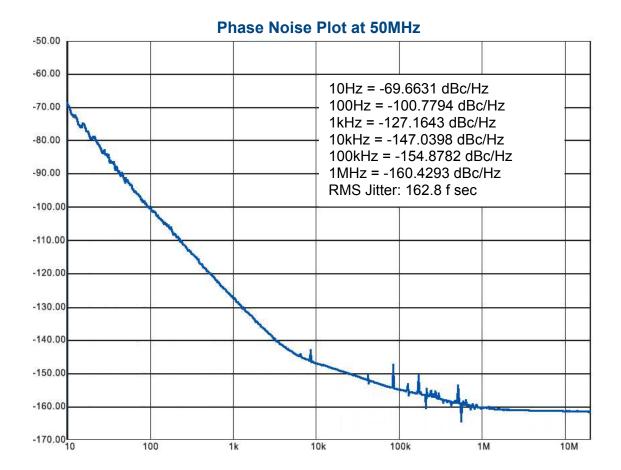
Surface Mount Application

These packages are designed for reflow soldering in accordance with recommended profiles. For handsoldering, the temperature of the iron should not exceed 400°C for three seconds.

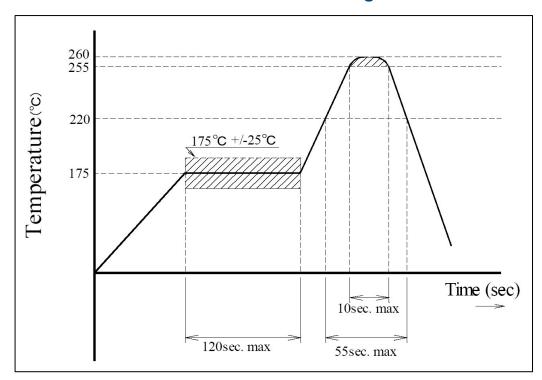

How to Order:


Pin Assignments

Pin#	Connections		
1	V_{C}		
2	Tristate		
3	Ground, Case		
4	Output		
5	N/C		
6	V_{CC}		


Marking Specification

Package



Recommended Reflow Soldering Profile

TABLE 2 Reliability Test Procedures and Conditions for Quartz Crystal Oscillators

1. Group A

B. Subgroup 2-4 pcs (One-half of Subgroup 1)

End point

Measurement Frequency Output waveform

Frequency Output waveform

Frequency Output waveform

Frequency

Output waveform

Electrical Characteristics at temperature endpoints and 25°C	Standard	Condition	Description
Frequency @ supply voltage and endpoints	MIL-STD-883	Method 1011	Thermal Shock
Input current		COND. B	Liq. To liq.
Symmetry (Duty Cycle)	15		-55°C to 125°C,
Zero/One levels			15cycles
Rise/Fall times			
Frequency (verify frequency at the temperature extremes)	MIL-STD-202	Method 105	Altitude, 3.44
Physical Dimensions		COND. B	inch Hg. 12 hrs
Length/width			
Height	MIL-STD-883	Method 1004	Moisture resist.
Package finish (Corrosion, discoloration, etc.)			with supply
Marking placement/legibility			voltage applied
maning placement of any			25°C to 65°C.
2. Group B			90 to 100% RH.
1000 hrs at or above 125°C, nominal voltage, proper load			10 cycles

2.

1000 hrs at or above 125°C, nominal voltage, proper load (sample size, no catastrophic failures allowed)

3. Group C- All units have passed Group A testing A. Subgroup 1-8 pcs.

Standard MIL-STD-883	Condition Method 2002 COND.B	<u>Description</u> Mechanical Shock 1500 g's, 0.5ms 5 drops, 6 axis	End Point Measurement Frequency Output waveform
MIL-STD-883	Method 2007 COND. A	Vibration, var. freq. 20 g's, 0.06" disp., 20- 20, 000-20 Hz	Frequency Output waveform
MIL-STD-883	Method 2003	Solderability	Visual 95% Coverage

C. Subgroups 3-4 pcs. (One half of Subgroup 1)

Resistance to

Immersion @350°C

Solder Heat

3.5 sec

Method 210

COND.A

Standard	Condition Storage Temp. No. Oper	Description 24 hrs. @ -55°C 24 hrs. @ 125°C	End point Measurement Frequency Output waveform
MIL-STD-883	Method 1009 COND. A	Salt Atmosphere 24 hrs. @ 35°C 0.5-3.0% Solution	Frequency Output waveform Visual
MIL-STD-883	Method 1014 COND. A1	Fine Leak	Qs <5 X10 ⁻⁸
MIL-STD-883	Method 1014 COND. C1	Gross Leak	Visual in 125°C Detector fluid

Test data is available for additional cost

MIL-STD-202