

PN736X

NFC Cortex-M0 microcontroller

Rev. 3.2 — 13 December 2016 406332 Product data sheet COMPANY PUBLIC

1. General description

The PN736X family is a family of 32-bit ARM Cortex-M0-based NFC microcontrollers offering high performance and low power consumption. It has a simple instruction set and memory addressing along with a reduced code size compared to existing architectures. PN736Xoffers an all in one solution, with features such as NFC, microcontroller, and software in a single chip. It operates at CPU frequencies of up to 20 MHz. It is part of the PN7462AU product family which offers a common set of features, library and tools.

The peripheral complement of the PN736X microcontroller includes 160/80 kB of flash memory, 12 kB of SRAM data memory and 4 kB EEPROM. It also includes one host interface with either high-speed mode I²C-bus, SPI, USB or high-speed UART, and two master interfaces, SPI and Fast-mode Plus I²C-bus. Four general-purpose counter/timers, a random number generator, one CRC coprocessor and up to 21 general-purpose I/O pins are also available.

The PN736X NFC microcontroller offer a one chip solution to build contactless applications. It is equipped with a highly integrated high-power output NFC-IC for contactless communication at 13.56 MHz enabling EMV-compliance on RF level, without additional external active components.

PN736X supports the following operating modes:

- ISO/IEC 14443-A and B, MIFARE
- JIS X 6319-4 (comparable with FeliCa scheme)
- ISO/IEC 15693, ICODE, ISO/IEC 18000-3 mode 3
- NFC protocols tag reader/writer, P2P
- ISO/IEC 14443- type A card emulation
- EMVCo compliance

2. Features and benefits

2.1 Integrated contactless interface frontend

- High RF output power frontend IC for transfer speed up to 848 kbit/s
- NFC IP1 and NFC IP2 support
- Full NFC tag support (type 1, type 2, type 3, type 4A and type 4B)
- P2P active and passive, target and initiator
- Card emulation ISO14443 type A
- ISO/IEC 14443 type A and type B

NFC Cortex-M0 microcontroller

- MIFARE classic card
- ISO/IEC 15693, and ISO/IEC 18000-3 mode 3
- Low-power card detection
- Dynamic Power Control (DPC) support
- Compliance with EMV contactless protocol specification
- Compliance with NFC standards

2.2 Cortex-M0 microcontroller

- Processor core
 - ◆ ARM Cortex: 32-bit M0 processor
 - Built-in Nested Vectored Interrupt Controller (NVIC)
 - ◆ Non-maskable interrupt
 - 24-bit system tick timer
 - Running frequency of up to 20 MHz
 - Clock management to enable low power consumption
- Memory
 - Flash: 160 (PN7362) / 80 kB (PN7360)
 - ◆ SRAM: 12 kB
 ◆ EEPROM: 4 kB
 - 40 kB boot ROM included, including USB mass storage primary boot loader for code download
- Debug option
 - Serial Wire Debug (SWD) interface
- Peripherals
 - Host interface:
 - USB 2.0 full speed with USB 3.0 hub connection capability
 - HSUART for serial communication, supporting standards speeds from 9600 bauds to 115200 bauds, and faster speed up to 1.288 Mbit/s
 - ◆ SPI with half-duplex and full duplex capability with speeds up to 7 Mbit/s
 - ◆ I²C supporting standard mode, fast mode and high-speed mode with multiple address support
 - Master interface:
 - SPI with half-duplex capability from 1 Mbit/s to 6.78 Mbit/s
 - I²C supporting standard mode, fast mode, fast mode plus and clock stretching
- Up to 21 General-Purpose I/O (GPIO) with configurable pull-up/pull-down resistors
- GPIO1 to GPIO12 can be used as edge and level sensitive interrupt sources
- Power
 - Two reduced power modes: standby mode and hard power-down mode
 - Supports suspend mode for USB host interface
 - Processor wake-up from hard power-down mode, standby mode, suspend mode via host interface, GPIOs, RF field detection
 - Integrated PMU to adjust internal regulators automatically, to minimize the power consumption during all possible power modes
 - Power-on reset

NFC Cortex-M0 microcontroller

- RF supply: external, or using an integrated LDO (TX LDO, configurable with 3 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V)
- Pad voltage supply: external 3.3 V or 1.8 V, or using an integrated LDO (3.3 V supply)
- Timers
 - ◆ Four general-purpose timers
 - Programmable Watchdog Timer (WDT)
- CRC coprocessor
- Random number generator
- Clocks
 - Crystal oscillator at 27.12 MHz
 - ◆ Dedicated PLL at 48 MHz for the USB
 - ◆ Integrated HFO 20 MHz and LFO 365 kHz
- General
 - ♦ HVQFN64 package
 - ◆ Temperature range: -40 °C to +85 °C

3. Applications

- Physical access control
- Gaming
- USB NFC reader, including dual interface smart card readers
- Home banking, payment readers EMVCo compliant
- High integration devices
- NFC applications

4. Quick reference data

Table 1. Quick reference data

Operating range: -40 °C to +85 °C unless specified; contactless interface: internal LDO not used

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDP(VBUS)}	power supply voltage on pin VBUS	card emulation, passive target (PLM)	2.3	-	5.5	V
		all RF modes	2.7	-	5.5	V
		all RF modes	3	-	5.5	V
V _{DD(PVDD)}	PVDD supply voltage	1.8 V	1.65	1.8	1.95	V
		3.3 V	3	3.3	3.6	V

NFC Cortex-M0 microcontroller

Table 1. Quick reference data ... continued

Operating range: -40 °C to +85 °C unless specified; contactless interface: internal LDO not used

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDP(VBUS)}	power supply current on pin VBUS	in hard power-down mode; $T = 25 ^{\circ}\text{C}$; $V_{DDP(VBUS)} = 5.5 \text{V}$; $RST_N = 0$	-	12	18	μΑ
		stand by mode; T = 25 °C; V _{DDP(VBUS)} = 3.3 V; external PVDD LDO used	-	18	-	μΑ
		stand by mode; T = 25 °C; V _{DDP(VBUS)} = 5.5 V; internal PVDD LDO used	-	55	-	μΑ
		suspend mode, USB interface; V _{DDP(VBUS)} = 5.5 V; external PVDD supply; T = 25 °C	-	120	250	μΑ
I _{DD(TVDD)}	TVDD supply current	on pin TVDD_IN; maximum supported current by the contactless interface	-	-	250	mA
P _{max}	maximum power dissipation		-	-	1050	mW
T _{amb}	ambient temperature	JEDEC PCB	-40	-	+85	°C

5. Ordering information

The PN736X family includes the following products:

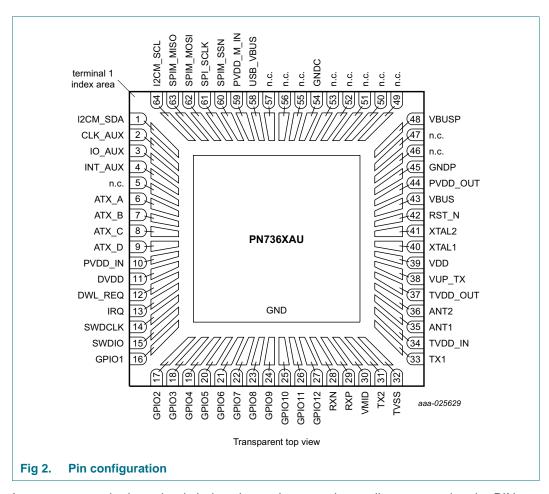
PN7362AU: Full memory available, no contact interface

PN7360AU: Memory limited to 80 kB, and no contact interface.

The table below lists the ordering information for these two products.

Table 2. Ordering information

Type number	Package					
	Name	Description	Version			
PN7360AUHN	HVQFN64	plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body $9\times 9\times 0.85~\text{mm}$	SOT804-4			
PN7362AUHN	HVQFN64	plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body $9\times 9\times 0.85~\text{mm}$	SOT804-4			


NFC Cortex-M0 microcontroller

6. Block diagram

7. Pinning information

7.1 Pinning

Important note: the inner leads below the package are internally connected to the PIN. Special care needs to be taken during the design so that no conductive part is present under these PINs, which could cause short cuts.

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description	
I2CM_SDA	1	I ² C-bus serial data I/O master/GPIO13	
CLK_AUX	2	auxiliary card contact clock/GPIO14	
IO_AUX	3	auxiliary card contact I/O/GPIO15	
INT_AUX	4	auxiliary card contact interrupt/GPIO16	
	5	not connected	
ATX_A	6	SPI slave select input (NSS_S)/I ² C-bus serial clock input (SCL_S)/HSUART RX	
ATX_B	7	SPI slave data input (MOSI_S)/I ² C-bus serial data I/O (SDA_S)/HSUART TX	
ATX_C	8	USB D+/SPI slave data output (MISO_S)/I ² C-bus address bit0 input/HSUART RTS	

PN736X

All information provided in this document is subject to legal disclaimers.

NFC Cortex-M0 microcontroller

 Table 3.
 Pin description ...continued

Symbol	Pin	Description
ATX_D	9	USB D-/SPI clock input (SCK_S)/I ² C-bus address bit1 input/HSUART CTS
PVDD_IN	10	pad supply voltage input
DVDD	11	digital core logic supply voltage input
DWL_REQ	12	entering in download mode
IRQ	13	interrupt request output
SWDCLK	14	SW serial debug line clock
SWDIO	15	SW serial debug line input/output
GPIO1	16	general-purpose I/O/SPI master select2 output
GPIO2	17	general-purpose I/O
GPIO3	18	general-purpose I/O
GPIO4	19	general-purpose I/O
GPIO5	20	general-purpose I/O
GPIO6	21	general-purpose I/O
GPIO7	22	general-purpose I/O
GPIO8	23	general-purpose I/O
GPIO9	24	general-purpose I/O
GPIO10	25	general-purpose I/O
GPIO11	26	general-purpose I/O
GPIO12	27	general-purpose I/O
RXN	28	receiver input
RXP	29	receiver input
VMID	30	receiver reference voltage input
TX2	31	antenna driver output
TVSS	32	ground for antenna power supply
TX1	33	antenna driver output
TVDD_IN	34	antenna driver supply voltage input
ANT1	35	antenna connection for load modulation in card emulation and P2P passive target modes
ANT2	36	antenna connection for load modulation in card emulation and P2P passive target modes
TVDD_OUT	37	antenna driver supply, output of TX_LDO
VUP_TX	38	supply of the contactless TX_LDO
VDD	39	1.8 V regulator output for digital blocks
XTAL1	40	27.12 MHz clock input for crystal
XTAL2	41	27.12 MHz clock input for crystal
RST_N	42	reset pin
VBUS	43	main supply voltage input of microcontroller
PVDD_OUT	44	output of PVDD_LDO for pad voltage supply
GNDP	45	Ground
-	46	not connected
-	47	not connected
VBUSP	48	Connected to VBUS
-	49	not connected

NFC Cortex-M0 microcontroller

Table 3. Pin description ... continued

Symbol	Pin	Description	
-	50	not connected	
-	51	not connected	
-	52	not connected	
-	53	not connected	
GNDC	54	connected to the ground	
-	55	not connected	
-	56	not connected	
-	57	not connected	
USB_VBUS	58	used for USB VBUS detection	
PVDD_M_IN	59	pad supply voltage input for master interfaces	
SPIM_SSN	60	SPI master select 1 output/GPIO17	
SPI_SCLK	61	SPI master clock output/GPIO18	
SPIM_MOSI	62	SPI master data output/GPIO19	
SPIM_MISO	63	SPI master data input/GPIO20	
I2CM_SCL	64	I ² C-bus serial clock output master/GPIO21	
GND	Die pad	Ground	

8. Functional description

8.1 ARM Cortex-M0 microcontroller

The PN736X is an ARM Cortex-M0-based 32-bit microcontroller, optimized for low-cost designs, high energy efficiency, and simple instruction set.

The CPU operates on an internal clock, which can be configured to provide frequencies such as 20 MHz, 10 MHz, and 5 MHz.

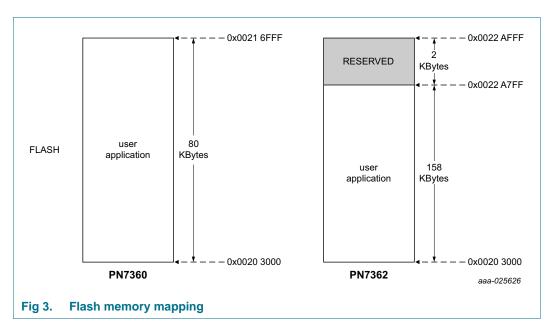
The peripheral complement of the PN736X includes a 160 kB flash memory, a 12 kB SRAM, and a 4 kB EEPROM. It also includes one configurable host interface (Fast-mode Plus and high-speed I²C, SPI, HSUART, and USB), two master interfaces (Fast-mode Plus I²C, SPI), 4 timers, 12 general-purpose I/O pins, and one 13.56 MHz contactless interface.

8.2 Memories

8.2.1 On-chip flash programming memory

The PN736X contains160 / 80 kB on-chip flash program memory depending on the version. The flash can be programmed using In-System Programming (ISP) or In-Application Programming (IAP) via the on-chip boot loader software.

The flash memory is divided into two instances of 80 kB each, with each sector consisting of individual pages of 64 bytes.

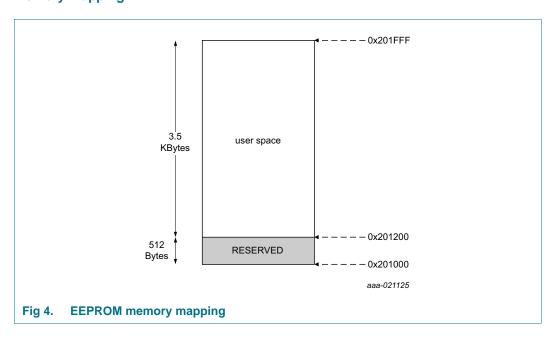

8.2.1.1 Memory mapping

The flash memory mapping is described in Figure 3.

PN736X

All information provided in this document is subject to legal disclaimers.

NFC Cortex-M0 microcontroller

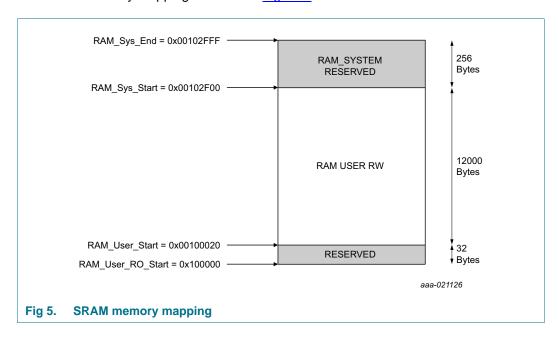


8.2.2 **EEPROM**

The PN736X embeds 4 kB of on-chip byte-erasable and byte-programmable EEPROM data memory.

The EEPROM can be programmed using In-System Programming (ISP).

8.2.2.1 Memory mapping


NFC Cortex-M0 microcontroller

8.2.3 **SRAM**

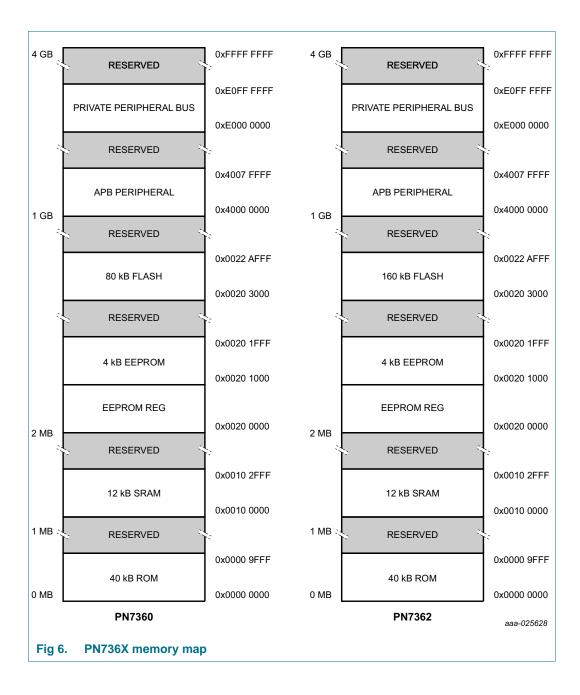
The PN736X contains a total of 12 kB on-chip static RAM memory.

8.2.3.1 Memory mapping

The SRAM memory mapping is shown in Figure 5.

8.2.4 ROM

The PN736X contains 40 kB of on-chip ROM memory. The on-chip ROM contains boot loader, USB mass storage primary download and the following Application Programming Interfaces (APIs):


- In-Application Programming (IAP) support for flash
- Lifecycle management of debug interface, code write protection of flash memory and USB mass storage primary download
- USB descriptor configuration
- Configuration of timeout and source of pad supply

8.2.5 Memory map

The PN736X incorporates several distinct memory regions. <u>Figure 6</u> shows the PN736X memory map, from the user program perspective, following reset.

The APB peripheral area is 512 kB in size, and is divided to allow up to 32 peripherals. Only peripherals from 0 to 15 are accessible. Each peripheral is allocated 16 kB, which simplifies the address decoding for the peripherals. APB memory map is described in Figure 7.

NFC Cortex-M0 microcontroller

NFC Cortex-M0 microcontroller

aaa-021127

APB ID	APB IF name	Connected IP	0x4004 8000
16 to 31	Rese	0x4004 0000	
15	Rese	erved	0x4003 C000
14	Rese	erved	0x4003 8000
13	SPIMASTER_APB	SPI Master IF	0x4003 4000
12	I2CMASTER_APB	I2C Master IF	0x4003 0000
11	Rese	erved	0x4002 C000
10	USB_APB	HostIF (USB) IP	0x4002 8000
9	PCR_APB	PowerClockResetModule IP	0x4002 4000
8	HOST_APB	HostIF (I2C/SPI/HSU/BufMgt) IP	0x4002 0000
7	TIMERS_APB	Timer IP	0x4001 C000
6	RNG_APB	RNG IP	0x4001 8000
5	CTUART_APB	Contact UART IP	0x4001 4000
4	CLOCKGEN_APB	Clock Gen module	0x4001 0000
3	CRC_APB	CRC IP	0x4000 C000
2	PMU_APB	PMU modules	0x4000 8000
1	CL_APB	Contactless IP	0x4000 4000
0	Rese	0x4000 0000	

Fig 7. APB memory map

8.3 Nested Vectored Interrupt Controller (NVIC)

Cortex-M0 includes a Nested Vectored Interrupt Controller (NVIC). The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

8.3.1 NVIC features

- · System exceptions and peripheral interrupts control
- Support 32 vectored interrupts
- · Four interrupt priority levels with hardware priority level masking
- One Non-Maskable Interrupt (NMI) connected to the watchdog interrupt
- Software interrupt generation

8.3.2 Interrupt sources

The following table lists the interrupt sources available in the PN736X microcontroller.

Table 4. Interrupt sources

EIRQ#	Source	Description
0	timer 0/1/2/3	general-purpose timer 0/1/2/3 interrupt
1	-	reserved
2	CLIF	contactless interface module interrupt
3	EECTRL	EEPROM controller
4	-	reserved
5	-	reserved
6	host IF	TX or RX buffer from I ² C, SPI, HSU, or USB module
7	-	reserved

PN736X

All information provided in this document is subject to legal disclaimers.

NFC Cortex-M0 microcontroller

 Table 4.
 Interrupt sources ...continued

EIRQ#	Source	Description		
8	-	reserved		
9	PMU	power management unit (temperature sensor, over current, overload, and VBUS level)		
10	SPI master	TX or RX buffer from SPI master module		
11	I ² C master	TX or RX buffer from I ² C master module		
12	PCR	high temperature from temperature sensor 0 and 1; interrupt to CPU from PCR to indicate wake-up from suspend mode; out of standby; out of suspend; event on GPIOs configured as inputs		
13	PCR	interrupt common GPIO1 to GPIO12		
14	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO1		
15	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO2		
16	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO3		
17	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO4		
18	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO5		
19	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO6		
20	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO7		
21	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO8		
22	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO9		
23	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO10		
24	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO11		
25	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO12		
26	-	reserved		
27	-	reserved		
28	-	reserved		
29	-	reserved		
30	-	reserved		
31	-	reserved		
NMI ^[1]	WDT	watchdog interrupt is connected to the non-maskable interrupt pin		

^[1] The NMI is not available on an external pin.

NFC Cortex-M0 microcontroller

8.4 GPIOs

The PN736X has 12 general-purpose I/O (GPIO) with configurable pull-up and pull-down resistors, plus nine additional GPIOs multiplexed with SPI master, I²C-bus master and AUX pins.

Pins can be dynamically configured as inputs or outputs. GPIO read/write are made by the FW using dedicated registers that allow reading, setting or clearing inputs. The value of the output register can be read back, as well as the current state of the input pins.

8.4.1 GPIO features

- Dynamic configuration as input or output
- 3.3 V and 1.8 V signaling
- Programmable weak pull-up and weak pull-down
- Independent interrupts for GPIO1 to GPIO12
- Interrupts: edge or level sensitive
- GPIO1 to GPIO12 can be programmed as wake-up sources
- Programmable spike filter (3 ns)
- Programmable slew rate (3 ns and 10 ns)
- · Hysteresis receiver with disable option

8.4.2 **GPIO** configuration

The GPIO configuration is done through the PCR module (power, clock, and reset).

8.4.3 **GPIO** interrupts

GPIO1 to GPIO12 can be programmed to generate an interrupt on a level, a rising or falling edge or both.

8.5 CRC engine 16/32 bits

The PN7362 has a configurable 16/32-bit parallel CRC coprocessor.

The 16-bit CRC is compliant to X.25 (CRC-CCITT, ISO/IEC 13239) standard with a generator polynome of:

$$g(x) = x^{16} + x^{12} + x^5 + 1$$

The 32-bit CRC is compliant to the ethernet/AAL5 (IEEE 802.3) standard with a generator polynome of:

$$g(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$$

CRC calculation is performed in parallel, meaning that one CRC calculation is performed in one clock cycle. The standard CRC 32 polynome is compliant with FIPS140-2.

Note: No final XOR calculation is performed.

Following are the CRC engine features:

- Configurable CRC preset value
- · Selectable LSB or MSB first

PN736X

All information provided in this document is subject to legal disclaimers.

NFC Cortex-M0 microcontroller

- CRC 32 calculation based on 32-bit, 16-bit, and 8-bit words
- CRC16 calculation based on 32-bit, 16-bit, and 8-bit words
- Supports bit order reverse

8.6 Random Number Generator (RNG)

The PN736X integrates a random number generator. It consists of an analog True Random Number Generator (TRNG), and a digital Pseudo Random Number Generator (PRNG). The TRNG is used for loading a new seed in the PRNG.

The random number generator features:

- 8-bit random number
- Compliant with FIPS 140-2
- Compliant with BSI AIS20 and SP800-22

8.7 Master interfaces

8.7.1 I²C master interface

The PN736X contains one I²C master and one I²C slave controller. This chapter describes the master interface. For more information on the I²C slave controller, refer to Section 8.8.2.

The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line (SCL) and a Serial Data Line (SDA). Each device has a unique address. The device can operate either as a receive-only device (such as LCD driver) or a transmitter with the capability to both receive and send information (such as memory).

8.7.1.1 I²C features

The I²C master interface supports the following features:

- Standard I²C compliant bus interface with open-drain pins
- Standard-mode, fast mode and fast mode plus (up to 1 Mbit/s).
- Support I²C master mode only.
- Programmable clocks allowing versatile rate control.
- Clock stretching
- 7-bit and 10-bit I2C slave addressing
- LDM/STM instruction support
- Maximum data frame size up to 1024 bytes

8.7.2 SPI interface

The PN736X contains one SPI master controller and one SPI slave controller.

The SPI master controller transmits the data from the system RAM to the SPI external slaves. Similarly, it receives data from the SPI external slaves and stores them into the system RAM. It can compute a CRC for received frames and automatically compute and append CRC for outgoing frames (optional feature).

PN736X

NFC Cortex-M0 microcontroller

8.7.2.1 SPI features

The SPI master interface provides the following features:

- SPI master interface: synchronous, half-duplex
- Supports Motorola SPI frame formats only (SPI block guide V04.0114 (Freescale) specification)
- Maximum SPI data rate of 6.78 Mbit/s
- Multiple data rates such as 1, 1.51, 2.09, 2.47, 3.01, 4.52, 5.42 and 6.78 Mbit/s
- Up to two slaves select with selectable polarity
- · Programmable clock polarity and phase
- Supports 8-bit transfers only
- Maximum frame size: 511 data bytes payload + 1 CRC byte
- Optional 1 byte CRC calculation on all data of TX and RX buffer
- · AHB master interface for data transfer

8.8 Host interfaces

The PN736X embeds four different interfaces for host connection: USB, HSUART, I²C, and SPI.

The four interfaces share the buffer manager and the pins; see Table 5.

Table 5. Pin description for host interface

Name	SPI	I ² C	USB	HSU
ATX_A	NSS_S	SCL_S	-	HSU_RX
ATX_B	MOSI_S	SDA_S	-	HSU_TX
ATX_C	MISO_S	I ² C_ADR0	DP	HSU_RTS_N
ATX_D	SCK_S	I ² C_ADR1	DM	HSU_CTS_N

The interface selection is done by configuring the Power Clock Reset (PCR) registers.

Note: The host interface pins should not be kept floating.

8.8.1 High-speed UART

The PN736X has a high-speed UART which can operate in slave mode only.

Following are the HSUART features:

- Standard bit-rates are 9600, 19200, 38400, 57600, 115200, and up to 1.288 Mbit/s
- Supports full duplex communication
- Supports only one operational mode: start bit, 8 data bits (LSB), and stop bits
- The number of "stop bits" programmable for RX and TX is 1 stop bit or 2 stop bits
- Configurable length of EOF (1-bit to 122-bits)

Table 6. HSUART baudrates

Bit rate (kBd)
9.6
19.2
38.4
57.6
115.2
230.4
460.8
921.6
1288 K

8.8.2 I²C host interface controller

The PN736X contains one I²C master and one I²C slave controller. This section describes the slave interface used for host communication. For more information on the I²C master controller, refer to Section 8.7.1.

The I²C-bus is bidirectional and uses only two wires: a Serial Clock Line (SCL) and a Serial Data Line (SDA). I²C standard mode (100 kbit/s), fast mode (400 kbit/s and up to 1 Mbit/s), and high-speed mode (3.4 Mbit/s) are supported.

8.8.2.1 I²C host interface features

The PN736X I²C slave interface supports the following features:

- Support slave I2C bus
- Standard mode, fast mode (extended to 1 Mbit/s support), and high-speed modes
- Supports 7-bit addressing mode only
- Selection of the I²C address done by two pins
 - It supports multiple addresses
 - The upper bits of the I²C slave address are hard-coded. The value corresponds to the NXP identifier for I²C blocks. The value is 01010XXb.
- General call (software reset only)
- Software reset (in standard mode and fast mode only)

Table 7. I²C interface addressing

I ² C_ADR1	I ² C_ADR0	I ² C address (R/W = 0, write)	I ² C address (R/W = 0, read)
0	0	0 × 28	0 × 28
0	1	0 × 29	0 × 29
1	0	0 × 2A	0 × 2A
1	1	0 × 2B	0 × 2B

NFC Cortex-M0 microcontroller

8.8.3 SPI host/Slave interface

The PN736X host interface can be used as SPI slave interface.

The SPI slave controller operates on a four wire SSI: Master In Slave Out (MISO), Master Out Slave In (MOSI), Serial Clock (SCK), and Not Slave Select (NSS). The SPI slave select polarity is fixed to positive polarity.

8.8.3.1 SPI host interface features

The SPI host/slave interface has the following features:

- SPI speeds up to 7 Mbit/s
- Slave operation only
- 8-bit data format only
- Programmable clock polarity and phase
- SPI slave select polarity selection fixed to positive polarity
- Half-duplex in HDLL mode
- Full-duplex in native mode

If no data is available, the MISO line is kept idle by making all the bits high (0xFF). Toggling the NSS line indicates a new frame.

Note: Programmable echo-back operation is not supported.

Table 8. SPI configuration

connection

CPHA switch: Clock phase: Defines the sampling edge of MOSI data

- CPHA = 1: Data are sampled on MOSI on the even clock edges of SCK, after NSS goes low
- CPHA = 0: Data are sampled on MOSI on the odd clock edges of SCK, after NSS goes low

CPOL switch: Clock polarity

- IFSEL1 = 0: The clock is idle low, and the first valid edge of SCK is a rising one
- IFSEL1 = 0: The clock is idle high, and the first valid edge of SCK is a falling one

8.8.4 USB interface

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and up to 127 peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot-plugging and dynamic configuration of devices. The host controller initiates all transactions. The PN736X USB interface consists of a full-speed device controller with on-chip PHY (physical layer) for device functions.

8.8.4.1 Full speed USB device controller

The PN736X embeds a USB device peripheral, compliant with USB 2.0 specification, full speed. It is interoperable with USB 3.0 host devices.

The device controller enables 12 Mbit/s data exchange with a USB host controller. It consists of a register interface, serial interface engine, and endpoint buffer memory. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer.

NFC Cortex-M0 microcontroller

The status of a completed USB transfer or error condition is indicated via status registers. If enabled, an interrupt is generated.

Following are the USB interface features:

- Fully compliant with USB 2.0 specification (full speed)
- Dedicated USB PLL available
- Supports 14 physical (7 logical) endpoints including one control endpoint
- Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types
- Single or double buffering allowed
- Support wake-up from suspend mode on USB activity and remote wake-up
- Soft-connect supported

8.9 I/O auxiliary - ISO/IEC 7816 UART - connecting an external TDA

To address applications where ISO/IEC 7816 interface is needed, the PN736X integrates the possibility to connect contact slot extender like TDA8026, TDA8020 or TDA8035, and to drive it thanks to its integrated ISO/IEC7816 UART.

The following pins are available:

- INT AUX
- CLK_AUX
- IO_AUX

For more details about the connection, refer to the slot extender documentation.

The integrated ISO/IEC 7816 UART has APB access for automatic convention processing, variable baud rate through frequency or division ratio programming, error management at character level for T = 0 and extra guard time register.

- FIFO 1 character to 32 characters in both reception and transmission mode
- Parity error counter in reception mode and transmission mode with automatic retransmission
- Card clock stop (at HIGH or LOW level)
- Automatic activation and deactivation sequence through a sequencer
- Supports the asynchronous protocols T=0 and T=1 in accordance with ISO/IEC 7816 and EMV
- Versatile 24-bit timeout counter for Answer To Reset (ATR) and waiting times processing
- Specific Elementary Time Unit (ETU) counter for Block Guard Time (BGT); 22 ETU in T=1 and 16 ETU in T=0
- Supports synchronous cards

8.10 Contactless interface - 13.56 MHz

The PN736X embeds a high power 13.56 MHz RF frontend. The RF interface implements the RF functionality like antenna driving, the receiver circuitry, and all the low-level functionalities. It helps to realize an NFC forum or an EMVCo compliant reader.

PN736X

All information provided in this document is subject to legal disclaimers.

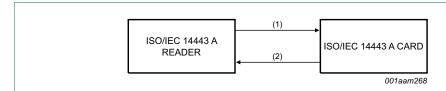
NFC Cortex-M0 microcontroller

The PN736X allows different voltages for the RF drivers. For information related to the RF interface supply, refer <u>Section 8.15</u>.

The PN736X uses an external oscillator, at 27.12 MHz. It is a clock source for generating RF field and its internal operation.

Key features of the RF interface are:

- ISO/IEC 14443 type A & B compliant
- MIFARE functionality, including MIFARE classic encryption in read/write mode
- ISO/IEC 15693 compliant
- NFC Forum NFCIP-1 & NFCIP-2 compliant
 - P2P, active and passive mode
 - reading of NFC forum tag types 1, 2, 3, 4, and 5
- FeliCa
- ISO/IEC 18000-3 mode 3
- EMVCo contactless 2.3.1 and 2.5
 - RF level can be achieved without the need of booster circuitry (for some antenna topologies the EMV RF-level compliance might physically not be achievable)
- Card mode enabling the emulation of an ISO/IEC 14443 type A card
 - Supports Passive Load Modulation (PLM) and Active Load Modulation (ALM)
- Low Power Card Detection (LPCD)
- Adjustable RX-voltage level


A minimum voltage of 2.3 V helps to use card emulation, and P2P passive target functionality in passive load modulation.

A voltage above 2.7 V enables all contactless functionalities.

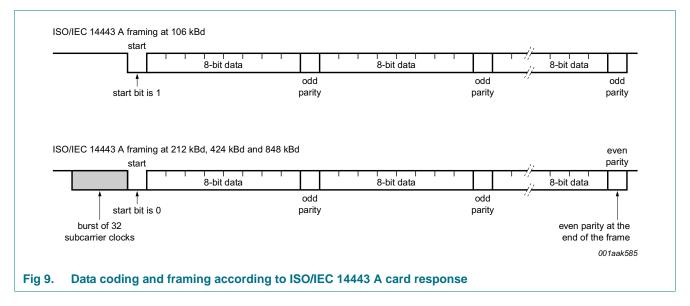
8.10.1 RF functionality

8.10.1.1 ISO/IEC14443 A/MIFARE functionality

The physical level of the communication is shown in <u>Figure 8</u>.

- (1) Reader to Card: 100 % ASK; modified miller coded; transfer speed 106 kbit/s to 848 kbit/s
- (2) Card to Reader: Subcarrier load modulation Manchester coded or BPSK, transfer speed 106 kbit/s to 848 kbit/s

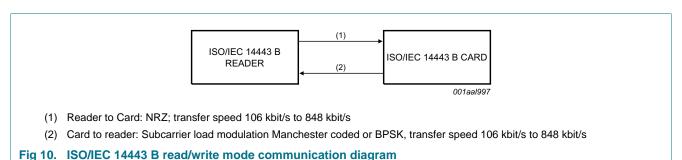
Fig 8. ISO/IEC 14443 A/MIFARE read/write mode communication diagram


The physical parameters are described in <u>Table 9</u>.

PN736X

Communication	Signal type	Transfer speed	Transfer speed				
direction		106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s		
reader to card (send data from the PN736X to a card) $f_c = 13.56 \text{ MHz}$	reader side modulation	100 % ASK	100 % ASK	100 % ASK	100 % ASK		
	bit encoding	modified miller encoding	modified miller encoding	modified miller encoding	modified miller encoding		
	bit rate (kbit/s)	f _c / 128	f _c / 64	f _c / 32	f _c / 16		
card to reader (PN736X receives data from a card)	card side modulation	sub carrier load modulation	sub carrier load modulation	sub carrier load modulation	sub carrier load modulation		
	subcarrier frequency	f _c / 16					
	bit encoding	Manchester encoding	BPSK	BPSK	BPSK		

Table 9. Communication overview for ISO/IEC 14443 A/MIFARE reader/writer


Figure 9 shows the data coding and framing according to ISO/IEC 14443 A/MIFARE.

The internal CRC coprocessor calculates the CRC value based on the selected protocol. In card mode for higher baudrates, the parity is automatically inverted as end of communication indicator.

8.10.1.2 ISO/IEC14443 B functionality

The physical level of the communication is shown in Figure 10.

PN736>

All information provided in this document is subject to legal disclaimers.

NFC Cortex-M0 microcontroller

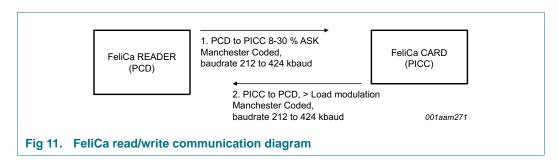

The physical parameters are described in Table 10.

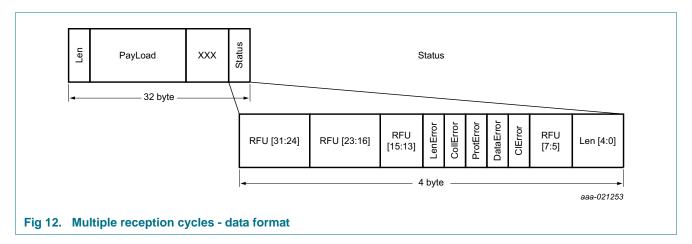
Table 10. Communication overview for ISO/IEC 14443 B reader/writer

Communication	Signal type	Transfer speed	Transfer speed					
direction		106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s			
reader to card (send data from the PN736X to a card)	reader side modulation	10 % ASK	10 % ASK	10 % ASK	10 % ASK			
	bit encoding	NRZ	NRZ	NRZ	NRZ			
f _c = 13.56 MHz	bit rate [kbit/s]	128/f _c	64/f _c	32/f _c	16/f _c			
card to reader (PN736X receives data from a card)	card side modulation	sub carrier load modulation	sub carrier load modulation	sub carrier load modulation	sub carrier load modulation			
	sub carrier frequency	f _c / 16						
	bit encoding	BPSK	BPSK	BPSK	BPSK			

8.10.1.3 FeliCa functionality

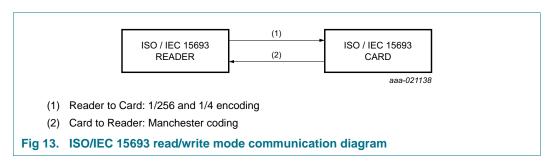
The FeliCa mode is a general reader/writer to card communication scheme, according to the FeliCa specification. The communication on a physical level is shown in Figure 11.

The physical parameters are described in Table 11.


Table 11. Communication overview for FeliCa reader/writer

Communication direction	Signal type	Transfer speed FeliCa	FeliCa higher transfer speeds
		212 kbit/s	424 kbit/s
reader to card (send data from the PN736X to a card) $f_c = 13.56$ MHz	reader side modulation	8 % to 30 % ASK	8 % to 30 % ASK
	bit encoding	Manchester encoding	Manchester encoding
1 _C = 13.30 Wil iz	bit rate	f _c / 64	f _c / 32
card to reader (PN736X	card side modulation	load modulation	load modulation
receives data from a card)	bit encoding	Manchester encoding	Manchester encoding

Note: The PN736X does not manage FeliCa security aspects.


PN736X supports FeliCa multiple reception cycles.

NFC Cortex-M0 microcontroller

8.10.1.4 ISO/IEC 15693 functionality

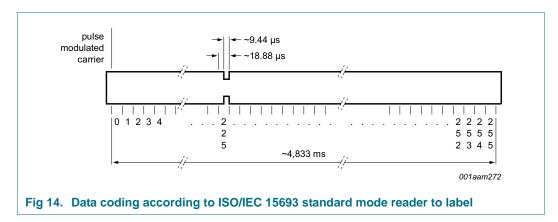
The physical level of the communication is shown in Figure 13.

The physical parameters are described in Table 12.

Table 12. Communication overview for ISO/IEC 15693 reader to label

Communication direction	Signal type	Transfer speed		
		f _c / 8192 kbit/s	f _c / 512 kbit/s	
reader to label (send data from the PN736X to a card)	reader side modulation	10 % to 30 % ASK or 100 % ASK	10 % to 30 % ASK or 90 % to 100 % ASK	
	bit encoding	1/256	1/4	
	bit length	4.833 μs	302.08 μs	

Table 13. Communication overview for ISO/IEC 15693 label to reader


Communication direction	Signal type	Transfer speed					
		6.62 kbit/s	13.24 kbit/s[1]	26.48 kbit/s	52.96 kbit/s		
label to reader (PN736X receives data from a card) f _c = 13.56 MHz	card side modulation	not supported	not supported	single (dual) sub carrier load modulation ASK	single sub carrier load modulation ASK		
	bit length (μs)	-	-	37.76	18.88		
	bit encoding	-	-	Manchester coding	Manchester coding		
	subcarrier frequency (MHz)	-	-	f _c / 32	f _c / 32		

[1] Fast inventory (page) read command only (ICODE proprietary command).

PN736X

All information provided in this document is subject to legal disclaimers.

NFC Cortex-M0 microcontroller

8.10.1.5 ISO/IEC18000-3 mode 3 functionality

The ISO/IEC 18000-3 mode 3 is not described in this document. For a detailed explanation of the protocol, refer to the ISO/IEC 18000-3 standard.

PN736X supports the following features:

- TARI = 9.44 μs or 18.88 μs
- Downlink: Four subcarrier pulse Manchester and two subcarrier pulse Manchester
- Subcarrier: 423 kHz (f_c / 32) with DR = 0 kHz and 847 kHz (f_c / 16) with DR = 1

8.10.1.6 NFCIP-1 modes

The NFCIP-1 communication differentiates between an active and a passive communication mode.

- In active communication mode, both initiator and target use their own RF field to transmit data
- In passive communication mode, the target answers to an initiator command in a load modulation scheme. The initiator is active in terms of generating the RF field
- The initiator generates RF field at 13.56 MHz and starts the NFCIP-1 communication
- In passive communication mode, the target responds to initiator command in load modulation scheme. In active communication mode, it uses a self-generated and self-modulated RF field.

PN736X supports NFCIP-1 standard. PN736X supports active and passive communication mode at transfer speeds of 106 kbit/s, 212 kbit/s, and 424 kbit/s, as defined in the NFCIP-1 standard.

NFC Cortex-M0 microcontroller

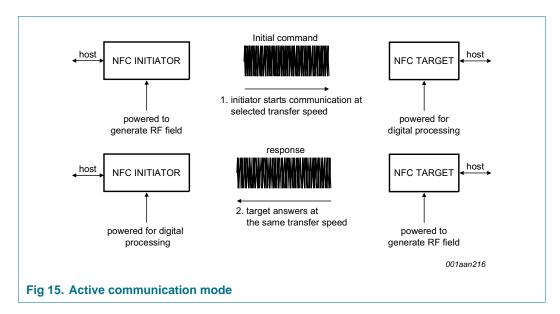


Table 14. Communication overview for active communication mode

Communication	Transfer speed					
direction	106 kbit/s	212 kbit/s	424 kbit/s			
initiator to target	according to ISO/IEC 14443 A	according to	according to			
target to initiator	100 % ASK, modified miller coded	FeliCa, 8-30 % ASK Manchester coded	FeliCa, 8-30 % ASK Manchester coded			

Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.

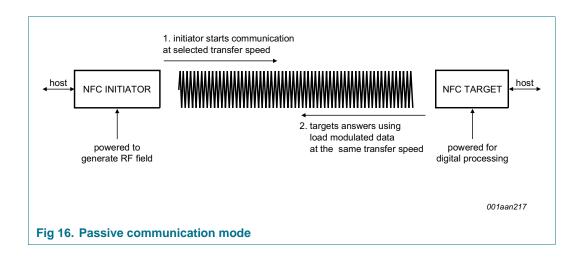


Table 15. Communication overview for passive communication mode

Communication direction	Transfer speed					
	106 kbit/s	212 kbit/s	424 kbit/s			
initiator to target	according to ISO/IEC 14443 A 100 % ASK, modified miller coded	according to FeliCa, 8-30 % ASK Manchester coded	according to FeliCa, 8-30 % ASK Manchester coded			
target to initiator	according to ISO/IEC 14443 A @106 kB modified miller coded	according to FeliCa, > 12 % ASK Manchester coded	according to FeliCa, > 12 % ASK Manchester coded			

The NFCIP-1 protocol is managed in the PN736X customer application firmware.

Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.

ISO/IEC14443 A card operation mode: PN736X can be addressed as a ISO/IEC 14443 A card. It means that PN736X can generate an answer in a load modulation scheme according to the ISO/IEC 14443 A interface description.

Note: PN736X components do not support a complete card protocol. The PN736X customer application firmware handles it.

The following table describes the physical layer of a ISO/IEC14443 A card mode:

Table 16. ISO/IEC14443 A card operation mode

Communication direction	ISO/IEC 14443 A (transfer speed: 106 kbit per second)			
reader/writer to PN736X	modulation on reader side	100 % ASK		
	bit coding	modified miller		
	bit length	128/f _c		
PN736X to reader/writer	modulation on PN736X side	sub carrier load modulation		
	subcarrier frequency	f _c / 16		
	bit coding	Manchester coding		

NFCIP-1 framing and coding: The NFCIP-1 framing and coding in active and passive communication mode is defined in the NFCIP-1 standard.

PN736X supports the following data rates:

Table 17. Framing and coding overview

Transfer speed	Framing and coding
106 kbit/s	according to the ISO/IEC 14443 A/MIFARE scheme
212 kbit/s	according to the FeliCa scheme
424 kbit/s	according to the FeliCa scheme

NFCIP-1 protocol support: The NFCIP-1 protocol is not elaborated in this document. The PN736X component does not implement any of the high-level protocol functions. These high-level protocol functions are implemented in the microcontroller. For detailed explanation of the protocol, refer to the NFCIP-1 standard. However, the datalink layer is according to the following policy:

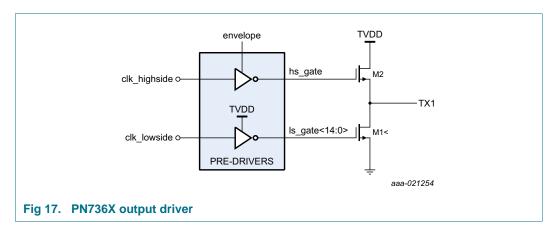
Speed shall not be changed while there is continuous data exchange in a transaction.

NFC Cortex-M0 microcontroller

• Transaction includes initialization, anticollision methods, and data exchange (in a continuous way means no interruption by another transaction).

In order not to disturb current infrastructure based on 13.56 MHz, the following general rules to start NFCIP-1 communication are defined:

- 1. By default, NFCIP-1 device is in target mode. It means that its RF field is switched off.
- 2. The RF level detector is active.
- 3. Only if the application requires, the NFCIP-1 device switches to initiator mode.
- 4. An initiator shall only switch on its RF field if the RF level detector does not detect external RF field during a time of T_{IDT}.
- 5. The initiator performs initialization according to the selected mode.


8.10.2 Contactless interface

8.10.2.1 Transmitter (TX)

The transmitter is able to drive an antenna circuit connected to outputs TX1 and TX2 with a 13.56 MHz carrier signal. The signal delivered on pins TX1 and pin TX2 is a 13.56 MHz carrier, modulated by an envelope signal for energy and data transmission. It can be used to drive an antenna directly, using a few passive components for matching and filtering. For a differential antenna configuration, either TX1 or TX2 can be configured to put out an inverted clock.

100 % modulation and several levels of amplitude modulation on the carrier can be performed to support 13.56 MHz carrier-based RF-reader/writer protocols. The standards ISO/IEC14443 A and B, FeliCa and ISO/IEC18092 define the protocols.

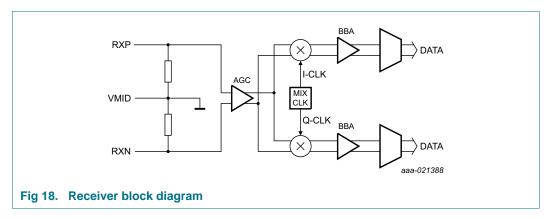
The PN736X embeds an overshoot and undershoot protection. It is used to configure additional signals on the transmitter output, for controlling the signal shape at the antenna output.

8.10.2.2 Receiver (RX)

In reader mode, the response of the PICC device is coupled from the PCB antenna to the differential input RXP/RXN. The reader mode receiver extracts this signal by first removing the carrier in passive mixers (direct conversion for I and Q). It then filters and amplifies the baseband signal before converting to digital values. The conversion to digital values is done with two separate ADCs, for I and Q channels. Both I and Q channels have a differential structure, which improves the signal quality.

PN736X

All information provided in this document is subject to legal disclaimers.


NXP Semiconductors

NFC Cortex-M0 microcontroller

The I/Q mixer mixes the differential input RF-signal down to the baseband. The mixer has a bandwidth of 2 MHz.

The down-mixed differential RX input signals are passed to the BBA and a band-pass filter. For considering all the protocols (type A/B, FeliCa), the high-pass cut-off frequency of BBA is configured between 45 kHz and 250 kHz. The configuration is done in four different steps. The low-pass cut-off frequency is greater than 2 MHz.

The output of band-pass filter is further amplified with a gain factor which is configurable between 30 dB and 60 dB. The baseband amplifier (BBA)/ADC I-channel and Q-channel can be enabled separately. It is required for ADC-based card mode functionality as only the I-channel is used in this case.

VMID: A resistive divider between AVDD and GND generates VMID. The resistive divider is connected to the VMID pin. An external blocking capacitor of typical value 100 nF is connected.

Automatic Gain Control (AGC): The contactless interface AGC is used to control the amplitude of 13.56 MHz sine-wave input signal received. The signal is received at the antenna connected between the pins RXP and RXN. A comparator is used to compare the peak value of the input signal with a reference voltage.

A voltage divider circuit is used to generate the reference voltage. An external resistor (typically 3.3 k Ω) is connected to the RX input, which forms a voltage divider with an on-chip variable resistor. The voltage divider circuit so formed has a 10-bit resolution.

Note: The comparator monitors the RXP signal only.

By varying the on-chip resistor, the amplitude of the input signal can be modified. The value of on-chip resistor is increased or decreased, depending on the output of the sampled comparator. The on-chip resistor value is adjusted until the peak of the input signal matches the reference voltage. Thus, the AGC circuit automatically controls the amplitude of the RX input.

The internal amplitude controlling resistor in the AGC has a default value of 10 K Ω . It means that, when the resistor control bits in AGC_VALUE_REG <9:0> are all 0, the resistance is 10 K Ω . As the control bits are increased, resistors are switched in parallel to the 10 K Ω resistor. It lowers the resultant resistance value to 5 k Ω (AGC_VALUE_REG <9:0>, all bits set to 1).

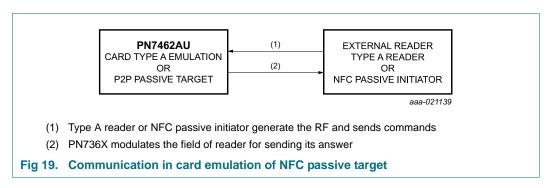
NFC Cortex-M0 microcontroller

Mode detector: The mode detector is a functional block of the PN736X which senses for an RF field generated by another device. The mode detector facilitates to distinguish between type A and FeliCa target mode. The host responds depending on the recognized protocol generated by an initiator peer device.

Note: The PN736X emulates type A cards and peer-to-peer active target modes according to ISO / IEC18092.

8.10.3 Low-Power Card Detection (LPCD)

The low-power card detection is an energy saving feature of the PN736X. It detects the presence of a card without starting a communication. Communication requires more energy to power the card and takes time, increasing the energy consumption.


It is based on antenna detuning detection. When a card comes close to the reader, it affects the antenna tuning, which is detected by PN736X.

The sensitivity can be varied for adjusting to various environment and applications constraints.

Remark: Reader antenna detuning may have multiple sources such as cards and metal near the antenna. Hence it is important to adjust the sensitivity with care to optimize the detection and power consumption. As the generated field is limited, distance for card detection might be reduced compared to normal reader operation. Performances depend on the antenna and the sensitivity used.

8.10.4 Active Load Modulation (ALM)

When PN736X is used in card emulation mode or P2P passive target mode, it modulates the field emitted by the external reader or NFC passive initiator.

To modulate the field, PN736X offers two possibilities:

- Passive Load Modulation (PLM): The PN736X modifies the antenna characteristics, which are detected by the reader through antenna coupling.
- Active Load Modulation (ALM): The PN736X generates a small field, in phase opposition with the field emitted by the reader. This modulation is detected by the reader reception stage.

The modulation type to use depends on the external reader and the antenna of PN736X and the application.

NFC Cortex-M0 microcontroller

8.10.5 Dynamic Power Control (DPC)

The PN736X supports the Dynamic Power Control (DPC) feature.

A lookup table is used to configure the output voltage and to control the transmitter current. In addition to the control of the transmitter current, wave shaping settings can be controlled as well, depending on the selected protocol and the measured antenna load.

8.10.5.1 RF output control

The DPC controls the RF output current and output voltage depending on the loading condition of the antenna.

8.10.5.2 Adaptive Waveform Control (AWC)

The DPC includes the Adaptive Waveform Control (AWC) feature.

Depending on the level of detected detuning on the antenna, RF wave shaping related register settings can be automatically updated, according to the selected protocol. A lookup table is used to configure the modulation index, the rise time and the fall time.

8.11 Timers

The PN736X includes two 12-bit general-purpose timers (on LFO clock domain) with match capabilities. It also includes two 32-bit general-purpose timers (on HFO clock domain) and a Watchdog Timer (WDT).

The timers and WDT can be configured through software via a 32-bit APB slave interface.

Table 18. Timer characteristics

Name	Clock source	Frequency	Counter length	Resolution	Maximum delay	Chaining
Timer 0	LFO/2	182.5 kHz	12 bit	300 μs	1.2 s	No
Timer 1	LFO/2	182.5 kHz	12 bit	300 μs	1.2 s	Yes
Timer 2	HFO	20 MHz	32 bit	50 ns	214 s	No
Timer 3	HFO	20 MHz	32 bit	50 ns	214 s	No
Watchdog	LFO/128	2.85 kHz	10 bit	21.5 ms	22 s	No

8.11.1 Features of timer 0 and timer 1

- 12-bit counters
- One match register per timer, no capture registers and capture trigger pins are needed
- One common output line gathering the four timers (Timer 0, Timer 1, Timer 2, and Timer 3)
- Interrupts
- Timer 0 and timer 1 can be concatenated (multiplied)
- Timer 0 and timer 1 have two count modes: single-shot or free-running
- Timer 0 and timer 1 timeout interrupts can be individually masked
- Timer 0 and timer 1 clock source is LFO clock (LFO/2 = 182.5 kHz)

Remark: The timers are dedicated for RF communication.

PN736X

NFC Cortex-M0 microcontroller

8.11.2 Features of timer 2 and timer 3

- 32-bit counters
- 1 match register per timer, no capture registers and capture trigger pins are needed
- 1 common output line gathering four timers (Timer 0, Timer 1, Timer 2, and Timer 3)
- Interrupts
- Timer 2 and timer 3 have two count modes: single-shot and free-running
- Timer 2 and timer 3 timeout interrupts can be individually masked
- Timer 2 and timer 3 clock source is the system clock

8.12 System tick timer

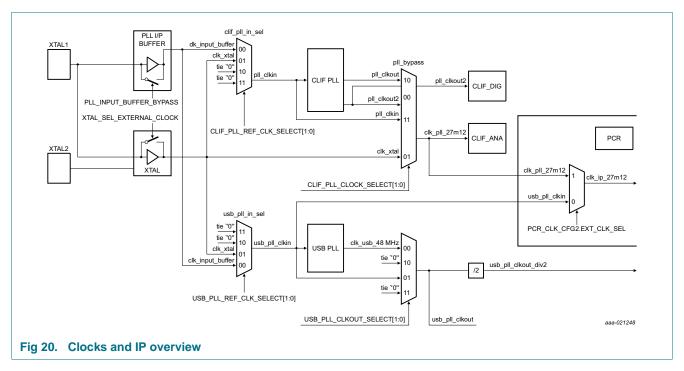
The PN736X microcontroller includes a system tick timer (SYSTICK) that generates a dedicated SYSTICK exception at a fixed time interval (10 ms).

8.13 Watchdog timer

If the microcontroller enters an erroneous state, the watchdog timer resets the microcontroller. When the watchdog timer is enabled, if the user program fails to "feed" (reload) the watchdog timer within a predetermined time, it generates a system reset.

The watchdog timer can be enabled through software. If there is a watchdog timeout leading to a system reset, the timer is disabled automatically.

- 10-bit counter
- Based on a 2.85 kHz clock
- Triggers an interrupt when a predefined counter value is reached
- Connected to the ARM subsystem NMI (non-maskable interrupt)
- If the watchdog timer is not periodically loaded, it resets PN736X


8.14 Clocks

The PN736X clocks are based on the following clock sources:

- 27.12 MHz external quartz
- 27.12 MHz crystal oscillator
- Internal oscillator: 20 MHz High Frequency Oscillator (HFO)
- Internal oscillator: 365 kHz Low Frequency Oscillator (LFO)
- Internal PLL at 48 MHz for the USB interface

Figure 20 indicates the clocks used by each IP.

NFC Cortex-M0 microcontroller

8.14.1 Quartz oscillator (27.12 MHz)

The 27.12 MHz quartz oscillator is used as a reference for all operations where the stability of the clock frequency is important for reliability. It includes contactless interface, SPI and I²C master interfaces, USB PLL for the USB interface, and HSUART.

Regular and low-power crystals can be used. <u>Figure 21</u> shows the circuit for generating stable clock frequency. The quartz and trimming capacitors are off-chip.

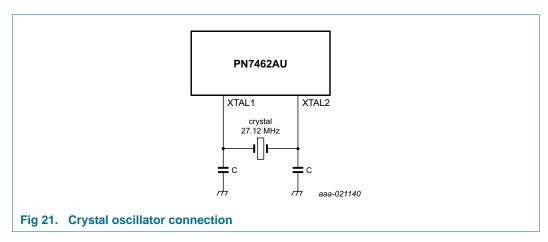


Table 19 describes the levels of accuracy and stability required on the crystal.

Product data sheet

COMPANY PUBLIC

NFC Cortex-M0 microcontroller

Table 19. Crystal requirements

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{xtal}	crystal frequency	ISO/IEC and FCC compliancy		27.12		MHz
Δf_{xtal}	crystal frequency accuracy	[1]	-50		+50	ppm
ESR	equivalent series resistance			50	100	Ω
C_L	load capacitance			10		pF
P _{drive}	drive power				100	μW

^[1] This requirement is according to FCC regulations requirements. The frequency should be +/- 14 kHz to meet ISO/IEC 14443 and ISO/IEC 18092.

8.14.2 USB PLL

The PN736X integrates a dedicated PLL to generate a low-noise 48 MHz clock, by using the 27.12 MHz from the external crystal. The 48 MHz clock generated is used as the USB main clock.

Following are the USB PLL features:

- Low-skew, peak-to-peak cycle-to-cycle jitter, 48 MHz output clock
- · Low power in active mode, low power-down current
- On-chip loop filter, external RC components not needed

8.14.3 High Frequency Oscillator (HFO)

The PN736X has an internal low-power High Frequency Oscillator (HFO) that generates a 20 MHz clock. The HFO is used to generate the system clock. The system clock default value is 20 MHz, and it can be configured to 10 MHz and 5 MHz for reducing power consumption.

8.14.4 Low Frequency Oscillator (LFO)

The PN736X has an internal low-power Low Frequency Oscillator (LFO) that generates a 365 kHz clock. The LFO is used by EEPROM, POR sequencer, contactless interface, timers, and watchdog.

8.14.5 Clock configuration and clock gating

In order to reduce the overall power consumption, the PN736X facilitates adjustment of system clock. It integrates clock gating mechanisms.

The system clock can be configured to the following values: 20 MHz, 10 MHz, and 5 MHz.

The clock of the following blocks can be activated or deactivated, depending on the peripherals used:

- · Contactless interface
- Host interfaces
- I²C master interface
- SPI master interface
- CRC engine
- Timers

PN736X

NFC Cortex-M0 microcontroller

- Random generator
- System clock
- EEPROM
- Flash memory

8.15 Power management

8.15.1 Power supply sources

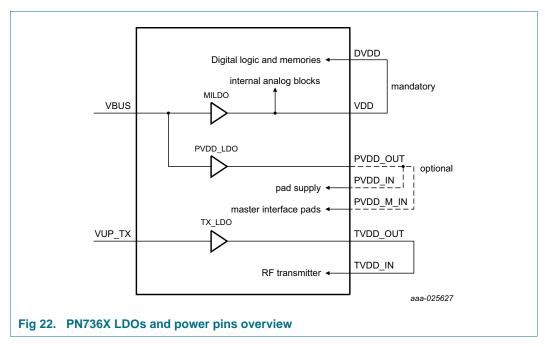
The PN736X is powered using the following supply inputs:

- VBUS: main supply voltage for internal analog modules, digital logic and memories
- TVDD IN: supply for the contactless interface
- PVDD_IN: pad voltage reference and supply of the host interface (HSU, USB, I²C, and SPI) and the GPIOs
- PVDD_M_IN: pad voltage reference and supply for the master interface (SPI and I²C)
- DVDD: supply for the internal digital blocks

8.15.2 PN736X Power Management Unit (PMU)

The integrated Power Management Unit (PMU) provides supply for internal analog modules, internal digital logic and memories, pads. It also provides supply voltages for the contactless interface.

It automatically adjusts internal regulators to minimize power consumption during all possible power states.


The power management unit embeds a mechanism to prevent the IC from overheat, overconsumption, or overloading the DC-to-DC converter:

- TXLDO 5 V monitoring
- Temperature sensor

Product data sheet

COMPANY PUBLIC

NFC Cortex-M0 microcontroller

PN736X embeds five Low Drop-Out regulators (LDO) for ensuring the stability of power supply, while the application is running.

- MLDO (main LDO): It provides 1.8 V supply for internal analog, digital and memory modules
- TXLDO: This LDO can be used to supply the RF transmitter
- PVDD LDO: PVDD LDO provides 3.3 V that can be used for all pads supply

Some are used while some are optional, like the TX_LDO which is proposed for the RF interface. It is up to the application designer to decide whether LDOs should be used.

8.15.2.1 Main LDO

The Main LDO (MLDO) provides a 1.8 V supply for all internal, digital and memory modules. It takes input from VBUS. MLDO includes a current limiter that avoids damage to the output transistors.

Output supply is available on VDD pin which must be connected externally to the DVDD pin.

Following are the main LDO features:

- Main Low-Drop-Out (MLDO) voltage regulator powered by VBUS (external supply)
- Current limiter to avoid damaging the output transistors

8.15.2.2 PVDD_LDO

The PVDD_LDO provides 3.3 V supply, that can be used for all digital pads. It may also be used to provide 3.3 V power to external components, avoiding an external LDO. It is supplied by VBUS, and requires a minimum voltage of 4 V to be functional. It delivers a maximum of 30 mA.

The output pin for PVDD_LDO is PVDD_OUT.

PN736X

All information provided in this document is subject to legal disclaimers.

NFC Cortex-M0 microcontroller

PVDD_LDO is used to provide the necessary supply to PVDD_IN and PVDD_M_IN (pad supply for master interfaces).

When an external supply is used, PVDD_OUT must be connected to the ground. When the LDO output is connected to the ground, the PN736X chip switches off the PVDD LDO.

The PVDD_LDO has a low-power mode, which is used automatically by the PN736X when the chip is in standby mode or suspend mode. It facilitates supply to HOST pads and GPIOS, and to detect wake-up signals coming from these interfaces.

Following are the PVDD_LDO features:

- Low-Drop-Out voltage regulator powered by V_{DDP(VBUS)} (external supply)
- Supports soft-start mode to limit inrush current during the initial charge of the external capacitance when the LDO is powered up
- Current limiter to avoid damaging the output transistors

Note: When PVDD_LDO is used, there must not be any load current drawn from PVDD_LDO during the soft start of the PVDD_LDO.

8.15.2.3 TXLDO

The PN736X consists of an internal transmitter supply LDO. The TXLDO can be used to maintain a constant output voltage for the RF interface.

The TXLDO is designed to protect the chip from voltage ripple introduced by the power supply on the pin VUP_TX. It is powered through the pin VUP_TX.

The programmable output voltages are: 3.0 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V.

For a given output voltage, VUP_TX shall always be higher than 0.3 V. In other words, to supply a 3 V output, the minimum voltage to be applied on VUP_TX is 3.3 V. If the voltage is not sufficient, then the voltage at the pin TVDD_OUT follows the voltage at the pin VUP_TX, lowered of 0.3 V.

When it is not used, TVDD_OUT shall be connected to TVDD_IN, and TX_LDO shall be turned off.

Following are the TXLDO features:

- Low-Drop-Out (TXLDO) voltage regulator
- Current load up to 180 mA
- Supports soft-start mode to limit inrush current during the initial charge of the external capacitance
- Current limiter to avoid damaging the output transistors

8.15.3 Power modes

The PN736X offers four different power modes, that enable the user to optimize its energy consumption. They are:

- Hard power-down mode
- Standby mode

PN736X

All information provided in this document is subject to legal disclaimers

- USB suspend mode
- Active mode

8.15.3.1 Active mode

In active mode, all functionalities are available and all IPs can be accessed. It is possible to configure the various clocks (IP clock, system clock) using register settings so that chip consumption is reduced. If IPs are not used, they can be disabled.

8.15.3.2 **Standby mode**

In standby mode, only a reduced part of the digital and the analog is active. It reduces the chip power consumption. The possible wake-up sources are still powered.

The LFO clock is used to lower the energy needs.

Active part in standby mode: Main LDO is active, in a low-power mode, plus all configured wake-up sources.

Depending on the application requirements, it is possible to configure PVDD_LDO in active mode, low-power mode or shut down mode when PN736X is going to standby mode. PVDD_LDO is active in a low-power mode by default.

Entering in standby mode: The application code triggers standby mode.

The PN736X has two internal temperature sensors. If these sensors detect an overheat, the PN736X is put into standby mode by the application firmware. The chip leaves the standby mode when both temperature sensors indicate that the temperature has come below the configured limit.

Limitations: Standby mode is not possible in the following cases:

- A host communication is in progress
- A wake-up condition is fulfilled. For example, external RF field presence is a wake-up source, and PN736X detects a field
- The RF field detector is a possible wake-up source, and the RF field detector is disabled
- PVDD is **not** present

8.15.3.3 Suspend mode

In suspend mode, clock sources are stopped except LFO. It reduces the chip power consumption.

Entering in suspend mode: An interrupt indicates to the application firmware when no activity has been detected on the USB port for more that 3 ms. The application code triggers the suspend mode.

Limitations: Suspend mode is prevented in the following cases:

- A host communication is in progress
- A wake-up condition is fulfilled. For example, external RF field presence is a wake-up source, and PN736X detects a field
- The RF field detector is a possible wake-up source, and the RF field detector is disabled

PN736X

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

NFC Cortex-M0 microcontroller

No voltage at pin PVDD

8.15.3.4 Wake-up from standby mode and suspend mode

PN736X can be woken-up from standby mode, and suspend mode, using the following means:

- Host Interface: SPI, HSUART, I²C, and USB if already selected before standby mode (SPI, HSUART, and I²C) or suspend mode (USB).
- RF field detection (presence of a reader or an NFC device in reader mode or P2P initiator)
- GPIO
- Interrupt generated on the auxiliary UART interface, through the interrupt pin
- Wake-up counter, for example to timely check for the presence of any contactless card
- Current overconsumption on the PVDD_OUT, voltage above 5 V on TVDD_IN
- Temperature sensor: When the PN736X goes in to standby mode because of over-heating, and when the temperature goes below the sensor configured value, PN736X wakes-up automatically. Each temperature sensor can be configured separately.

It is possible to configure the sources as enabled or disabled.

8.15.3.5 Hard Power-Down (HPD) mode

The PN736X Hard Power-Down (HPD), reduces the chip power consumption, by powering down most of the chip blocks. All clocks and LDOs are turned off, except the main LDO which is set in low-power mode.

Entering in HPD mode: If the RST_N pin is set to low, the PN736X enters in to Hard Power Down (HPD) mode. It also enters in to HPD mode if the V_{DDP(VBUS)} goes below the critical voltage necessary for the chip to work (2.3 V) and the auto HPD feature is enabled.

Exiting the HPD mode: The PN736X leaves the HPD mode, when both RST_N pin is set to high level and the $V_{DDP(VBUS)}$ voltage is above 2.3 V.

8.15.4 Voltage monitoring

The voltage monitoring mode detects whether the voltage is within the operational conditions to enable a proper operation of the RF interface. The following power supplies are monitored: VBUS (two voltage monitors), VBUS P (one voltage monitor).

<u>Section 9.1.2</u> discusses about the minimum voltages necessary for contactless interface operation.

Table 20. Threshold configuration for voltage monitor

Voltage monitor	Threshold 1	Threshold 2	Threshold 3
VBUSMON1	2.3 V	2.7 V	n.a.[1]
VBUSMON2	2.7 V	4.0 V	n.a.[1]
VBUSP	2.7 V	3.0 V	3.9 V

[1] n.a. means not applicable.

PN736X

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved

NFC Cortex-M0 microcontroller

8.15.4.1 **VBUS** monitor

The PN736X includes up to two levels (2.3 V or 2.7 V) for monitoring the voltage on the VBUS pin. If this voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the PCR. This signal may be enabled for interrupt in the interrupt enable register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a dedicated status register. Two threshold levels (2.3 V or 2.7 V) can be selected to cause a forced Hard Power-Down (HPD) of chip.

8.15.4.2 VBUSP monitor

The PN736X includes three levels (2.7 V, 3.0 V, and 3.9 V) for monitoring the voltage on the VBUSP pin.

8.15.4.3 PVDD LDO supply monitor

The PN736X includes up to two levels (VBUSMON2: 2.7 V or 4.0 V) for monitoring the voltage on the PVDD LDO input supply. If supply voltage is 4.0 V or above, PVDD LDO can be enabled. The software has to check whether the voltage is sufficient before enabling the LDO.

8.15.5 Temperature sensor

The PN736X power management unit provides temperature sensors, associated to the TX_LDO. It detects problems that would result in high power consumption and heating, which could damage the chip and the user device.

Triggering levels are configurable. Following temperatures can be chosen: 135 °C, 130 °C, 125 °C, and 120 °C. By default, the temperature sensor is set to 120 °C.

When one of the temperature sensors detects an increase in temperature above the configured level, an interrupt is generated. The application can then decide to go into standby or suspend mode. The PN registers indicate which temperature sensor generated the interrupt.

When the temperature goes below the configured threshold temperature, PN736X wakes up automatically.

8.16 System control

8.16.1 Reset

PN736X has six possible sources for reset. The list of sources is described in Table 21.

Table 21. Reset sources

Source	Description
software - PCR	soft reset from the PCR peripheral
software - ARM	software reset form the ARM processor
I ² C interface	I ² C Standard 3.0 defines a method to reset the chip via an I ² C command[1]
watchdog	reset the chip if the watchdog threshold is not periodically reloaded
VBUS voltage	power-on reset sequence; if the voltage is above 2.3 V, reset the chip

[1] This feature can be disabled.

NFC Cortex-M0 microcontroller

The watchdog reset, I²C reset and soft resets from PCR and ARM processor resets the chip except the PCR and the ARM debug interface. The Power-On Reset (POR) resets the complete chip including the PCR and ARM debug interface.

Upon reset, the processor executes the first instruction at address 0, which is initially the reset vector mapped from the boot block. At that point, all the processor and peripheral registers are initialized to predetermined values.

8.16.2 Brown-Out Detection (BOD)

The PN736X includes up to two levels for monitoring the voltage on the VBUS pin. If this voltage falls below one of the selected voltages (2.3 V or 2.7 V), the BOD asserts an interrupt signal to the PCR. This signal can be enabled for interrupt in the interrupt enable register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a dedicated status register. Two threshold levels (2.3 V and 2.7 V) can be selected to cause a forced Hard Power-Down (HPD) of the chip.

8.16.3 APB interface and AHB-Lite

All APB peripherals are connected to one APB bus.

The AHB-Lite connects the AHB masters. The AHB masters include the CPU bus of the ARM Cortex-M0, host interface, contactless interface, SPI interface to the flash memory. It also includes EEPROM memory, SRAM, ROM, and AHB to APB bridge.

8.16.4 External interrupts

PN736X enables the use of 12 GPIOs as edge or level sensitive inputs (GPIO1 to GPIO12).

8.17 SWD debug interface

The Cortex-M0 processor-based devices use serial wire ARM CoreSightTM Debug technology. The PN736X is configured to support four break points and two watch points.

The SWD interface can be disabled for having code (or data) read/write access protection. A dedicated SWD disable bit is available in the protected area of the EEPROM memory. Once the SWD interface is disabled, it is not possible to enable it anymore.

8.17.1 SWD interface features

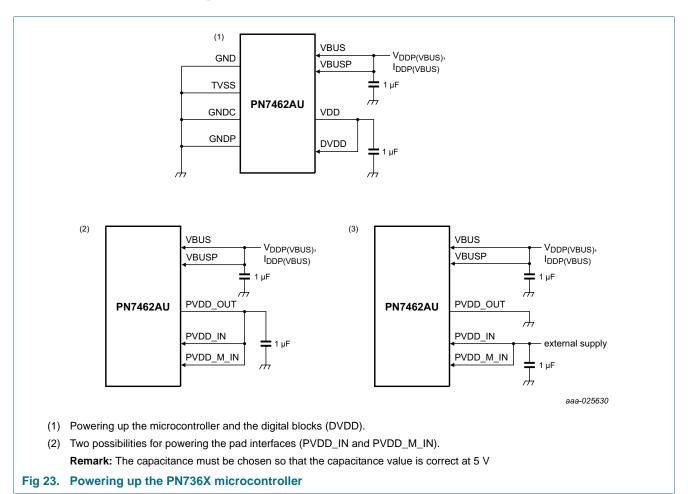
- Run control of the processor allowing to start and stop programs
- Single step one source or assembler line
- Set breakpoints while the processor is running
- · Read/write memory contents and peripheral registers on-the-fly
- "Printf" like debug messages through the SWD interface

NFC Cortex-M0 microcontroller

9. Application design-in information

9.1 Power supply connection

The following table indicates the power sources for all the PN736X power inputs.


Table 22. Power supply connection

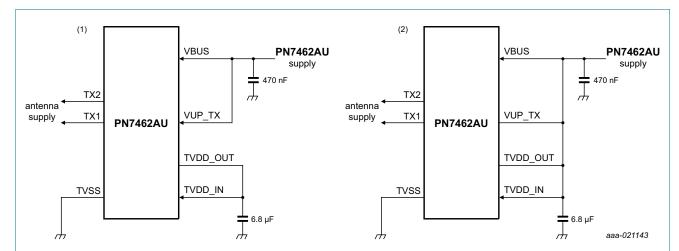
Power inputs	Power sources	Comment		
VBUS	external source	chosen according to the expected performances (RF power when TX_LDO is used, global power consumption)		
VBUSP	external source; connected to VBUS	VBUSP is connected to VBUS, with the addition of a decoupling capacitor		
TVDD_IN	external supply or using the TX_LDO	external supply can be used (up to 5.5 V) to increase RF power		
PVDD_IN	external supply or using PVDD_LDO	PVDD_LDO can be used, when V _{DDP(VBUS)} > 4 V. It makes a regulated 3.3 V supply available to GPIO and host interface pads, without the addition of an external LDO		
PVDD_M_IN	pvdd_nin external supply or using pvdd_nin external supply is used pvdd_nin external supply is			
		external supply is used for 1.8 V		
DVDD	connected to the VDD output	VDD provides 1.8 V stabilized supply, out of the MAIN_LDO		

^[1] When external supply and PVDD_OUT are not used, PVDD_OUT must be connected to the ground, with a ground resistance of less than 10 Ω .

NFC Cortex-M0 microcontroller

9.1.1 Powering up the microcontroller

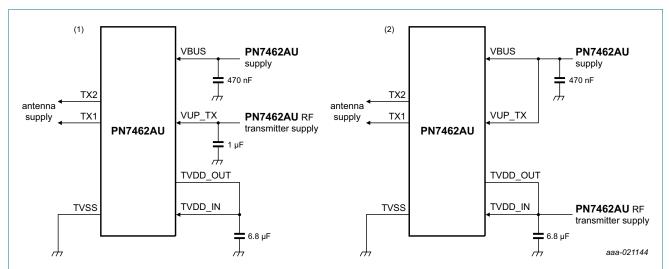
The schematics in <u>Figure 23</u> describe the power supply of the chip $(V_{DDP(VBUS)})$, including the digital blocks supply (DVDD). It indicates two possibilities to supply the pads, using the internal LDO, or using an external supply. The internal LDO requires that $V_{DDP(VBUS)} > 4$ V. It avoids the requirement of a separate LDO when $V_{DDP(VBUS)}$ has a sufficient voltage.


Power supply is available to pads through PVDD_IN (host interface). Similarly, power supply is available to master interface pads through PVDD_M_IN. When PVVD _LDO is used, maximum total current available from PVDD_OUT for the pads supply is 30 mA.

When an external source is used for PVDD_IN and PVDD_M_IN, PVDD_OUT must be connected to the ground, with a ground resistance of less than 10 Ω .

9.1.2 Powering up the contactless interface

Powering of contactless interface is done though TVDD_IN. Internal LDO (TXLDO) or external supply can be used.


NFC Cortex-M0 microcontroller

The capacitance value must be chosen so that the capacitance value is correct at 5 V.

- (1) Using TXLDO
- (2) Without using TXLDO

Fig 24. Powering up the contactless interface using a single power supply

The capacitance value must be chosen so that the capacitance value is correct at 5 V.

- (1) Using TXLDO.
- (2) Without using TXLDO.

Fig 25. Powering up the contactless interface using an external RF transmitter supply

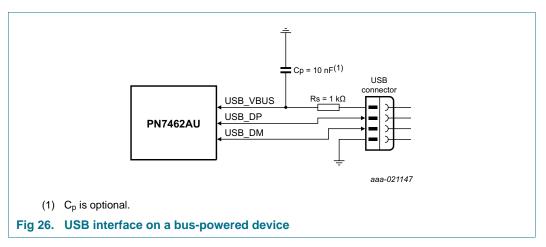
Note: The TVDD_OUT pin must not be left floating. It should be at the same voltage as the TVDD_IN pin.

The power design must be designed properly to be able to deliver a clean power supply voltage.

In any case (external TVDD or internal TX_LDO internal supply), TVDD_IN supply must be stable before turning on the RF field. The capacitor shall be 6.8 μ F or higher (up to 10 μ F)

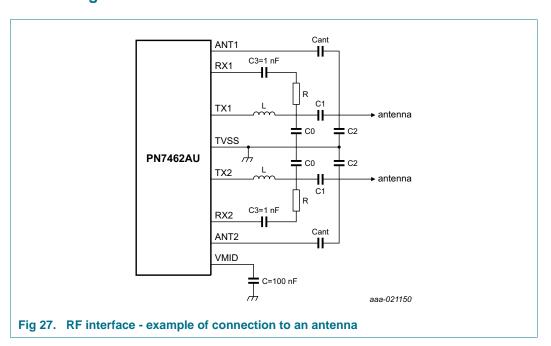
PN736X

All information provided in this document is subject to legal disclaimers.


© NXP Semiconductors N.V. 2016. All rights reserved.

NFC Cortex-M0 microcontroller

Every noise level on top of the supply voltage can disturb the RF communication performance of the PN736X. Therefore, special attention must be paid to the filtering circuit.


When powering up the device through the USB interface, TVDD capacitor value shall be chosen so that the maximum capacitance on VBUS remains as per the USB specification.

9.2 Connecting the USB interface

When the USB interface is not used, the USB_VBUS pin shall be connected to the ground.

9.3 Connecting the RF interface

NFC Cortex-M0 microcontroller

9.4 Unconnected I/Os

When not used, the following pins need to be "not connected":

- I2C Master interface: I2CM_SDA, I2CM_SCL
- SPI Master interface: SPIM_SSN, SPIM_SCLK, SPIM_MOSI, SPIM_MISO
- AUX interface: INT_AUX, IO_AUX, CLK_AUX

Pads have to be configured in GPIO mode, pad input and out put driver need to be disabled.

10. Limiting values

Table 23. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit		
V _{ESD} electrostatic discharge voltage	electrostatic discharge voltage	Human Body Model (HBM)	Human Body Model (HBM)					
	on all pins	[1]	-2	+2	kV			
		Charged Device Model (CDM)						
	on all pins	<u>[1]</u>	-1	+1	kV			
T _{stg}	storage temperature	non-operating		-55	+150	°C		
T _{j(max)}	maximum junction temperature			-	+125	°C		
P _{tot}	total power dissipation	reader mode; V _{DDP(VBUS)} = 5.5 V		-	1050	mW		

^[1] EIA/JESD22-A114-D.

Table 24. Limiting values for GPIO1 to GPIO12

Symbol	Parameter	Conditions	Min	Max	Unit
Vi	input voltage		-0.3	4.2	V

Table 25. Limiting values for I²C master pins (i2cm_sda, i2cm_scl)

Symbol	Parameter	Conditions	Min	Max	Unit
Vi	input voltage		-0.3	4.2	V

Table 26. Limiting values for SPI master pins (spim_nss, spim_miso, spim_mosi and spi_clk)

Symbol	Parameter	Conditions	Min	Max	Unit
V_i	input voltage		-0.3	4.2	V

Table 27. Limiting values for host interfaces atx_a, atx_b, atx_c, atx_d in all configurations (USB, HSUART, SPI and I²C)

Symbol	Parameter	Conditions	Min	Max	Unit
V_i	input voltage		-0.3	4.2	V

PN736X

NFC Cortex-M0 microcontroller

Table 28. Limiting values for crystal oscillator

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{IH}	high-level input voltage	XTAL1, XTAL2	0	2.2	V

Table 29. Limiting values for power supply

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DDP(VBUS)}	power supply voltage on pin VBUS		[1]	-0.3	6	V
V _{DDP(VBUSP)}	power supply voltage on pin VBUSP		[1]	-0.3	6	V
pin supply w	voltage for host interface and GPIOs	(on pin PVDD_IN)				
$V_{DD(PVDD)}$	PVDD supply voltage	on pin PVDD_IN; power supply for host interfaces and GPIOs	[1]	-0.3	4.2	V
pin supply v	voltage for master interfaces (on pin	PVDD_M_IN)			•	,
$V_{DD(PVDD)}$	PVDD supply voltage	on pin PVDD_M_IN; power supply for master interfaces	[1]	-0.3	4.2	V
RF interface	LDO (pin VUP_TX)				•	,
V _{I(LDO)}	LDO input voltage	for RF interface LDO	<u>[1]</u>	-0.3	6	V
RF transmit	ter (pin TVDD_IN)					·
V _{DD(TVDD)}	TVDD supply voltage	for RF interface transmitter	<u>[1]</u>	-0.3	6	V

^[1] Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.

Table 30. Limiting values for RF interface

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_i	input voltage	on pins RXN and RXP	0	2.2	V

[1] Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.

NFC Cortex-M0 microcontroller

11. Recommended operating conditions

Table 31. Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb}	ambient temperature	JDEC PCB – 0.5	-40	25	85	°C
V _{DDP(VBUS)} pow	power supply voltage on pin VBUS	external PVDD supply, card emulation and passive target (PLM)	2.3	-	5.5	V
		external PVDD supply, reader mode, NFC initiator and passive/active target mode (ALM and PLM)	2.7	-	5.5	V
		internal PVDD_LDO supply, reader mode, NFC initiator and passive/active target mode (ALM and PLM)	4	-	5.5	V
host interfac	ce and GPIOs pin power supply (pin	PVDD_IN)	·			
$V_{DD(PVDD)}$	PVDD supply voltage	for digital pins				
		1.8 V pin supply	1.65	1.8	1.95	V
		3.3 V pin supply	3	3.3	3.6	V
SPI master	and I ² C master interfaces pin power	supply (on pin PVDD_M_IN)				
V _{DD(PVDD)}	PVDD supply voltage	for master pins				
		1.8 V pin supply	1.65	1.8	1.95	V
		3.3 V pin supply	3	3.3	3.6	V
RF interface	LDO (pin VUP_TX)					
$V_{I(LDO)}$	LDO input voltage	TX_LDO supply for powering up RF interface	3	5	5.5	V
RF interface	transmitter					
I _{DD(TVDD)}	TVDD supply current	on pin TVDD_IN	-	-	250	mΑ

12. Thermal characteristics

Table 32. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air with exposed pad soldered on a four-layer JEDEC PCB	40	°K/W

NFC Cortex-M0 microcontroller

13. Characteristics

13.1 Static characteristics

Table 33. Static characteristics for RST_N input pin

Data are given for $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IH}	high-level input voltage		1.1	-	V _{DDP(VBUS)}	V
V_{IL}	low-level input voltage		0	-	0.4	V
I _{IH}	high-level input current	$V_i = V_{DDP(VBUS)}$	-	-	1	μΑ
I _{IL}	low-level input current	$V_i = 0 V$	-1	-	-	μΑ
C _{in}	input capacitance		-	5	-	pF

Table 34. Static characteristics for IRQ input pin

Data are given for $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} - 0.4	-	V_{PVDD_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
C _L	load capacitance		-	-	20	pF
R _{pull-down}	extra pull down	extra pull-down is activated in HDP	0.45	-	0.8	ΜΩ

Table 35. Static characteristics for DWL_REQ

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	high-level input voltage	VV _{PVDD_IN} = 1.8 V	0.65 × V _{PVDD_IN}	-	-	V
V _{IL}	high-level input voltage	VV _{PVDD_IN} = 1.8 V	-	-	0.35 × V _{PVDD_IN}	V
V _{IH}	high-level input voltage	$VV_{PVDD_IN} = 3.3 V$	2	-	-	V
V_{IL}	high-level input voltage	$VV_{PVDD_IN} = 3.3 V$	-	-	0.8	V
I _{IH}	high-level input current	V _I = PVDD_IN	-	-	1	μΑ
I _{IL}	low-level input current	V _I = 0 V	-1	-	-	μΑ
C _L	load capacitance		-	5	-	pF

13.1.1 GPIO static characteristics

Table 36. Static characteristics for GPIO1 to GPIO21

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} - 0.4	-	V_{PVDD_IN}	V
V _{OL}	low-level output voltage	I _{OH} < 3 mA	0	-	0.4	V
V _{IH}	high-level input voltage	$V_{PVDD_IN} = 3.3 \text{ V}$	2	-	-	V
		$V_{PVDD_IN} = 1.8 \text{ V}$	0.65 × V _{PVDD_IN}	-	-	V

PN736X

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

NFC Cortex-M0 microcontroller

Table 36. Static characteristics for GPIO1 to GPIO21 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IL}	low-level input voltage	$V_{PVDD_IN} = 3.3 V$	-	-	0.8	V
		V _{PVDD_IN} = 1.8 V	-	-	$0.35 \times \\ V_{PVDD_IN}$	V
V _{hys}	hysteresis voltage	V_{PVDD_IN} = 1.8 V and V_{PVDD_IN} = 3.3 V	0.1 × V _{PVDD_IN}	-	-	V
I _{OZ}	OFF-state output current	$V_O = 0 \text{ V};$ $V_O = V_{PVDD_IN}; \text{on-chip}$ pull-up/pull-down resistors disabled	-	-	1000	nA
R _{pd}	pull-down resistance	$V_{PVDD_{IN}} = 3.3 \text{ V}$	65	90	120	kΩ
		V _{PVDD_IN} = 1.8 V	65	90	120	kΩ
R _{pu}	pull-up resistance	$V_{PVDD_IN} = 3.3 V$	65	90	120	kΩ
		V _{PVDD_IN} = 1.8 V	65	90	120	kΩ
I _{OSH}	short circuit current output high	Drive high; cell connected to ground; V _{PVDD_IN} = 3.3 V	-	-	58	mA
		Drive low; cell connected to PVDD_IN; V _{PVDD_IN} = 1.8 V	-	-	30	mA
I _{OSL}	short circuit current output low	$V_{OH} = V_{PVDD_IN} = 3.3$	-	-	54	mA
	·	$V_{OH} = V_{PVDD_IN} = 1.8$	-	-	37	mA
I _{IL}	low-level input current	V _I = 0 V	-1	-	-	μΑ
I _{IH}	high-level input current	$V_I = V_{PVDD_IN}$	-	-	1	μΑ
I _{OH}	high-level output current	$V_{OH} = V_{PVDD_IN}$	-	-	3	mA
I _{OL}	low-level output current	V _{OL} = 0 V	-	-	3	mA

13.1.2 Static characteristics for I²C master

Table 37. Static characteristics for I²CM_SDA, I²CM_SCL - S

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	$0.7 \times V_{PVDD_M_IN}$	-	$V_{PVDD_M_IN}$	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
C _L	load capacitance		-	-	10	pF
V _{IH}	High-level input voltage		$\begin{array}{c} 0.7 \times \\ V_{PVDD_M_IN} \end{array}$	-	-	V
V _{IL}	low-level input voltage		-	-	$\begin{array}{c} 0.3 \times \\ V_{PVDD_M_IN} \end{array}$	V
I _{IH}	high-level input current	$V_I = V_{PVDD_M_IN}$	-	-	1	μΑ
I _{IL}	low-level input current	$V_I = 0 V$	-1	-	-	μΑ
C _{in}	input capacitance		-	5	-	pF

PN736X

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

NFC Cortex-M0 microcontroller

13.1.3 Static characteristics for SPI master

Table 38. Static characteristics for SPIM_MOSI

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	high-level output voltage	I _{OH} < 3 mA	$V_{PVDD_M_IN} - 0.4$	-	$V_{PVDD_M_IN}$	V
V_{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
C_L	load Capacitance		-	-	20	pF

Table 39. Static characteristics for SPIM_NSS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	$V_{PVDD_M_IN} - 0.4$	-	V _{PVDD_M_IN}	V
V_{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
C_L	load Capacitance		-	-	20	pF

Table 40. Static characteristics for SPIM_MISO

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	high-level input voltage	$V_{PVDD_M_IN} = 1.8 \text{ V}$	$0.65 \times V_{PVDD_M_IN}$	-	-	V
V _{IL}	low-level input voltage	$V_{PVDD_M_IN} = 1.8 \text{ V}$	-	-	$0.35 \times V_{PVDD_M_IN}$	V
V _{IH}	high-level input voltage	$V_{PVDD_M_IN} = 3.3 \text{ V}$	2	-	-	V
V _{IL}	low-level input voltage	$V_{PVDD_M_IN} = 3.3 \text{ V}$	-	-	0.8	V
I _{IH}	high-level input current	$V_i = V_{PVDD_M_IN}$	-	-	1	μΑ
I _{IL}	low-level input current	$V_i = 0 V$	–1	-	-	μΑ
C _{in}	input capacitance		-	5	-	pF

Table 41. Static characteristics for SPI_SCLK

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	$V_{PVDD_M_IN} - 0.4$	-	V _{PVDD_M_IN}	V
V_{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
C _L	load capacitance		-	-	20	pF

13.1.4 Static characteristics for host interface

Table 42. Static characteristics for ATX_ used as SPI_NSS, ATX_ used as I²CADR0, ATX_ used as SPI_SCK, ATX_ used as SPI_MOSI

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IH}	high-level input voltage	V _{PVDD_IN} = 1.8 V	$0.65 \times V_{PVDD_M_IN}$	-	-	V
V _{IL}	low-level input voltage	$V_{PVDD_IN} = 1.8 V$	-	-	$0.35 \times V_{PVDD_M_IN}$	V
V _{IH}	high-level input voltage	$V_{PVDD_IN} = 3.3 \text{ V}$	2	-	-	V
V_{IL}	low-level input voltage	$V_{PVDD_IN} = 3.3 V$	-	-	0.8	V
I _{IH}	high-level input current	$V_i = V_{PVDD_IN}$	-	-	1	μΑ
I _{IL}	low-level input current	$V_i = 0 V$	-1	-	-	μΑ
C _{in}	input capacitance		-	5	-	pF

NFC Cortex-M0 microcontroller

Table 43. Static characteristics of ATX_ used as I²CSDA, ATX_ used as I²CSCL

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	$0.7 \times V_{PVDD_IN}$	-	V_{PVDD_IN}	V
V_{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
C _L	load capacitance		-	-	10	pF
V_{IH}	high-level input voltage		$0.7 \times V_{PVDD_IN}$	-	-	V
V_{IL}	low-level input voltage		-	-	$0.3 \times V_{PVDD_IN}$	V
I _{IH}	high-level input current	$V_i = V_{PVDD_IN}$	-	-	1	μΑ
I _{IL}	low-level input current	$V_i = 0 V$	-1	-	-	μΑ
C _{in}	Input capacitance		-	5	-	pF

Table 44. Static characteristics of ATX_ used as SPIMISO

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} – 0.4	-	V _{PVDD_IN}	V
V_{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
C _L	load capacitance		-	-	20	pF

Table 45. USB characteristics

Data are given for $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _{OZ}	OFF-state output current	0 V < V _i < 3.3 V	-10	-	10	μΑ
V _{DDP(VBUS)}	power supply voltage on pin VBUS		4	-	5.5	V
V _{DI}	differential input sensitivity voltage	(D+) - (D-)	0.2	-	-	V
V _{CM}	differential common mode voltage range	includes V _{DI} range	0.8	-	2.5	V
V _{th(rs)se}	single-ended receiver switching threshold voltage		0.8	-	2	V
V _{OL}	low-level output voltage	for low-speed or full-speed; R_L of 1.5 $k\Omega$ to 3.6 V	-	-	0.3	V
V _{OH}	high-level output voltage	driven; for low- speed or full-speed; R_L of 15 $k\Omega$ to GND	2.8	-	V _{PVDD_IN}	V
C _{trans}	transceiver capacitance	pin to GND	-	15		pF
Z _{DRV}	driver output impedance for driver which is not high-speed capable	with 33 Ω series resistor; steady state drive	28	-	44	Ω
V _{CRS}	output signal crossover voltage		1.3	-	2	V

NFC Cortex-M0 microcontroller

Table 46. Static characteristics of HSU_TX and HSU RTS pin

Data are given for $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} – 0.4	-	V _{PVDD_IN}	V
V_{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	٧
C _L	load capacitance		-	-	20	pF

Table 47. Static characteristics of HSU_RX, HSU_CTS

Data are given for $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IH}	high-level input voltage	$V_{PVDD_M_IN} = 1.8 \text{ V}$	$0.65 \times V_{PVDD_IN}$	-	-	V
V_{IL}	low-level input voltage	$V_{PVDD_M_IN} = 1.8 \text{ V}$	-	-	$0.35 \times V_{PVDD_IN}$	V
V_{IH}	high-level input voltage	$V_{PVDD_M_IN} = 3.3 \text{ V}$	2	-	-	V
V_{IL}	low-level input voltage	$V_{PVDD_M_IN} = 3.3 \text{ V}$	-	-	0.8	V
I _{IH}	high-level input current		-	-	1	μΑ
I _{IL}	low-level input current		-1	-	-	μΑ
C _L	load capacitance		-	5	-	pF

13.1.5 Clock static characteristics

Table 48. Static characteristics of XTAL pin (XTAL1, XTAL2)

 $T_{amb} = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C}$

Parameter[1]	Conditions	Min	Typ[2]	Max	Unit
k characteristics on XTAL	1 when using PLL				<u> </u>
peak-to-peak input voltage		0.2	-	1.65	V
characteristics XTAL PLL	input		,	"	'
high-level input current	$V_i = V_{DD}$	-	-	1	μΑ
low-level input current	$V_i = 0 V$	-1	-	-	μА
input voltage		-	-	V_{DD}	V
input voltage amplitude		200	-	-	mV
input capacitance	all power modes	-	2	-	pF
cteristics for 27.12 MHz ci	ystal oscillator		,	"	'
input capacitance	pin XTAL1	-	2	-	pF
input capacitance	pin XTAL2	-	2	-	pF
	peak-to-peak input voltage characteristics XTAL PLL high-level input current low-level input current input voltage input voltage input voltage amplitude input capacitance cteristics for 27.12 MHz cr	peak-to-peak input voltage characteristics XTAL PLL input high-level input current low-level input current voltage input voltage input voltage input voltage amplitude input capacitance cteristics for 27.12 MHz crystal oscillator input capacitance pin XTAL1	peak-to-peak input voltage $\begin{array}{c c} & 0.2 \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

^[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.

NFC Cortex-M0 microcontroller

13.1.6 Static characteristics - power supply

Table 49. Static characteristics for power supply

Data are given for $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
pin supply: P	VDD_LDO					
$V_{O(LDO)}$	LDO output voltage	V _{DDP(VBUS)} >= 4.0 V, I _{PVDDOUT} <= 30 mA	3	3.3	3.6	V
I _{DD(PVDD_OUT)}	maximum supply current	for pin PVDD_OUT	-	-	30	mA
pin supply fo	r host interface and GP	lOs (on pin PVDD_IN)				
I _{DD(PVDD)}	PVDD supply current		-	-	25	mA
pin supply fo	r master interfaces (on	pin PVDD_M_IN)	·	·	·	
I _{DD(PVDD)}	PVDD supply current		-	-	25	mA
contactless in	nterface: TX_LDO (pins	VUP_TX, TVDD_OUT)	·	·	·	
V _{I(LDO)}	LDO input voltage		3	-	5.5	V
I _{L(LDO)(max)}	maximum LDO load current		-	-	180	mA
$V_{O(LDO)}$	LDO output voltage	DC output voltage (target: 3.0 V) 5.5 V > V _{I(LDO)} > 3.3 V	2.8	3	3.25	V
		DC output voltage (target: 3.0 V) 3.3 V > $V_{I(LDO)}$ > 2.7 V	-	V _{I(LDO)} – 0.3	-	V
		DC output voltage (target: 3.3 V) 5.5 V > $V_{I(LDO)}$ > 3.6 V	3.1	3.3	3.55	V
		DC output voltage (target: 3.3 V) 3.6 V > $V_{I(LDO)}$ > 2.7 V	-	V _{I(LDO)} – 0.3	-	V
		DC output voltage (target: 3.6 V) 5.5 V > $V_{I(LDO)}$ > 3.9 V	3.4	3.6	3.95	V
		DC output voltage (target: 3.6 V) 3.9 V > $V_{I(LDO)}$ > 2.7 V	-	V _{I(LDO)} – 0.3	-	V
		DC output voltage (target: 4.5 V) 5.5 V > V _{I(LDO)} > 5.0 V	4.3	4.5	4.9	V
		DC output voltage (target: 4.7 V) 5.5 V > V _{I(LDO)} > 5.0 V	4.55	4.75	5.2	V
I _{O(LDO)}	LDO output current	V _{I(LDO)} = 5.5 V	-	-	180	mA
	nterface: RF transmitte	(on pin TVDD_IN)	-	1	1	<u> </u>
I _{DD(TVDD)}	TVDD supply current	maximum current supported by the RF transmitter	-	-	250	mA

Table 50. Static characteristics for voltage monitors

 $T_{amb} = -40$ °C to +85 °C

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
$V_{(th)HL}$	negative-going	VBUS monitor;						
	threshold voltage	set to 2.3 V	2.15	2.3	2.45	V		
		set to 2.7 V	2.6	2.75	2.95	V		
		set to 4.0 V	3.6	3.8	3.9	V		

PN736X

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

NFC Cortex-M0 microcontroller

Table 50. Static characteristics for voltage monitors

 $T_{amb} = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{hys}	hysteresis voltage			'				
		set to 2.3 V	100	150	200	mV		
		set to 2.7 V	100	150	200	mV		
		set to 4.0 V	40	80	100	mV		
$V_{(th)HL}$	negative-going threshold voltage	VBUSP monitor						
		set to 2.7 V	2.45	2.56	2.65	V		
		set to 3.0 V	2.68	2.825	2.95	V		
		set to 3.9 V	3.7	3.9	4.1	V		
V _{hys}	hysteresis voltage	VBUSP monitor	,			,		
		set to 2.7 V	12	25	35	mV		
		set to 3.0 V	14	30	40	mV		
		set to 3.9 V	20	35	55	mV		

13.1.7 Static characteristics for power modes

Table 51. Static characteristics for power modes

 $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDP(VBUS)}	power supply current on pin VBUS	active mode; V _{DDP(VBUS)} = 5.5 V, external PVDD, external TVDD, all IP clocks disabled	-	6.5	-	mA
		code				
		while(1){}				
		executed from flash;				
		active mode; V _{DDP(VBUS)} = 5.5 V, external PVDD, external TVDD, all IP clocks enabled	-	8.5	-	mA
		code				
		while(1){}				
		executed from flash;				
		suspend mode; V _{DDP(VBUS)} = 5.5 V, external PVDD, T = 25 °C	-	120	250	μΑ
		V _{BUS} = 5.5 V, T = 25 ℃, internal PVDD LDO, including D+ and D– pull-up	-	360	440	μΑ
		standby mode; V _{DDP(VBUS)} = 3.3 V; external PVDD supply; T _{amb} = 25 °C	-	18	-	μΑ
		standby mode; V _{DDP(VBUS)} = 5.5 V; V _{internal} PVDD supply; T _{amb} = 25 °C	-	55	-	μΑ
		hard power down; V _{DDP(VBUS)} = 5.5 V; RST_N = 0 V; T _{amb} = 25 °C	-	12	18	μΑ

NFC Cortex-M0 microcontroller

13.1.8 Static characteristics RF interface

Table 52. Static characteristics for RF interface

Data are given for $T_{amb} = -40$ °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
pins ANT	1 and ANT2					1
Z	impedance	between ANT1 and ANT2; low impedance	-	10	17	Ω
pins RXN	and RXP		'		'	
V _{i(dyn)}	dynamic input voltage	on pins RXN and RXP	-	-	$V_{DD} - 0.05$	V
C _{in}	input pin capacitance	on pins RXN and RXP	-	12	-	pF
Z	impedance	between pins RX to VMID; reader, card emulation and P2P modes	0	-	15	kΩ
V _{det}	detection voltage	card emulation and target modes; configuration for 19 mV threshold	-	-	30	mV _(p-p)
pins TX1	and TX2			-		-
V _{OH}	high-level output voltage	pins TX1 and TX2; T _{VDD_IN} = 3.1 V and I _{OH} = 30 mA	V _{TVDD_IN} - 150	-	-	mV
V _{OL}	low-level output voltage	pins TX1 and TX2; $T_{VDD_IN} = 3.1$; $I_{TX} = 30$ mA	-	-	200	mV
R _{OL}	low-level output resistance	$V_{TX} = V_{TVDD} - 100 \text{ mV};$ CWGsN = 01h	-	-	80	Ω
		$V_{TX} = V_{TVDD} - 100 \text{ mV};$ CWGsN = 0Fh	-	-	10	Ω
R _{OH}	high-level output resistance	$V_{TX} = V_{TVDD} - 100 \text{ mV}$	-	-	10	Ω

13.2 Dynamic characteristics

Table 53. Dynamic characteristics for IRQ input pin

Data are given for $T_{amb} = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$; unless otherwise specified

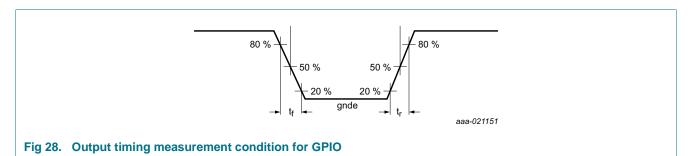
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _f fall ti	fall time	high speed; $C_L = 12 \text{ pF}$; $V_{PVDD_IN} = 3.3 \text{ V}$	1	-	3.5	ns
		high speed; $C_L = 12 \text{ pF}$; $V_{PVDD_IN} = 1.8 \text{ V}$	1	-	3.5	ns
t _f	fall time	slow speed; C _L = 12 pF; V _{PVDD_IN} = 3.3 V	3	-	10	ns
		slow speed; $C_L = 12 \text{ pF}$; $V_{PVDD_IN} = 1.8 \text{ V}$	2	-	10	ns

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	high speed: $C_L = 12 \text{ pF}$; $V_{PVDD_IN} = 3.3 \text{ V}$	1	-	3.5	ns
		high speed: $C_L = 12 \text{ pF}$; $V_{PVDD_IN} = 1.8 \text{ V}$	1	-	3.5	ns
t _r	rise time	slow speed: $C_L = 12 \text{ pF}$; $V_{PVDD_IN} = 3.3 \text{ V}$	3	-	10	ns
		slow speed: $C_L = 12 \text{ pF}$; $V_{PVDD_IN} = 1.8 \text{ V}$	2	-	10	ns

13.2.1 Flash memory dynamic characteristics

Table 54. Dynamic characteristics for flash memory


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{prog}	programming time	1 page (64 bytes); slow clock	-	-	2.5	ms
N _{Endu}	endurance		200	500	-	cycles
t _{ret}	retention time		-	20	-	years

13.2.2 EEPROM dynamic characteristics

Table 55. Dynamic characteristics for EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{prog}	programming time	1 page (64 bytes)	-	2.8	-	ms
N _{Endu}	endurance		300	500	-	Kcycles
t _{ret}	retention time		-	20	-	years

13.2.3 GPIO dynamic characteristics

NFC Cortex-M0 microcontroller

Table 56. Dynamic characteristics for GPIO1 to GPIO21

 $T_{amb} = -40$ °C to +85 °C

Symbol	Parameter	Conditions	Min	Max	Unit
t _r	t _r rise time	C _L = 12 pF; PVDD = 1.8 V; slow speed	2.0	10.0	ns
		C _L = 12 pF; PVDD = 1.8 V; fast speed	1.0	3.5	ns
		C _L = 12 pF; PVDD = 3.3 V; slow speed	3.0	10.0	ns
		C _L = 12 pF; PVDD = 3.3 V; fast speed	1.0	3.5	ns
t _f	fall time	C _L = 12 pF; PVDD = 1.8 V; slow speed	2.0	10.0	ns
		C _L = 12 pF; PVDD = 1.8 V; fast speed	1.0	3.5	ns
		C _L = 12 pF; PVDD = 3.3 V; slow speed	3.0	10.0	ns
		C _L = 12 pF; PVDD = 3.3 V; fast speed	1.0	3.5	ns

13.2.4 Dynamic characteristics for I²C master

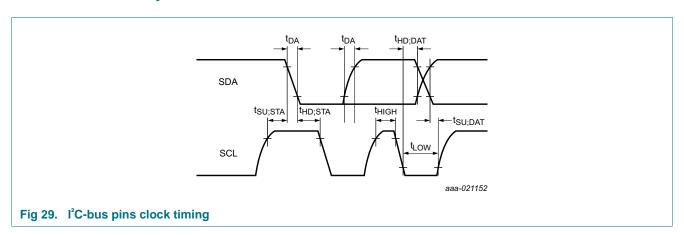


Table 57. Timing specification for fast mode plus I²C

 $T_{amb} = -40$ °C to +85 °C

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCL}	SCL clock frequency	fast mode plus; C _b < 100 pF	0	1	MHz
t _{SU;STA}	set-up time for a (repeated) START condition	fast mode plus; C _b < 100 pF	260	-	ns
t _{HD;STA}	hold time (repeated) START condition	fast mode plus; C _b < 100 pF	260	-	ns
t _{LOW}	low period of the SCL clock	fast mode plus; C _b < 100 pF	500	-	ns
t _{HIGH}	high period of the SCL clock	fast mode plus; C _b < 100 pF	260	-	ns
t _{SU;DAT}	data set-up time	fast mode plus; C _b < 100 pF	50	-	ns
t _{HD;DAT}	data hold time	fast mode plus; C _b < 100 pF	0	-	ns
t _{r(SDA)}	SDA rise time	fast mode plus; C _b < 100 pF	-	120	ns
t _{f(SDA)}	SDA fall time	fast mode plus; C _b < 100 pF	-	120	ns
V_{hys}	hysteresis of Schmitt trigger inputs	fast mode plus; C _b < 100 pF	$0.1 \times V_{PVDD_M_IN}$	-	V

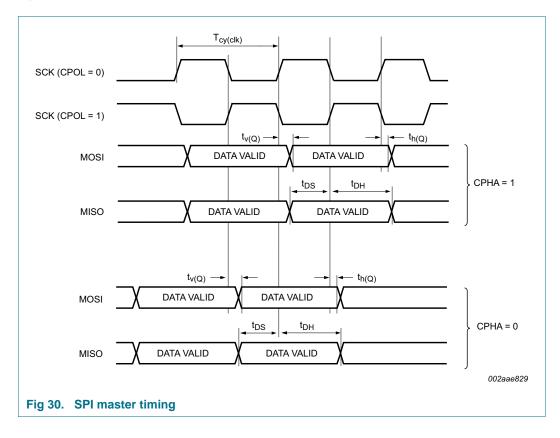

NFC Cortex-M0 microcontroller

Table 58. Timing specification for fast mode I²C

 $T_{amb} = -40$ °C to +85 °C

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCL}	SCL clock frequency	fast mode; C _b < 400 pF	0	400	kHz
t _{SU;STA}	set-up time for a (repeated) START condition	fast mode; C _b < 400 pF	600	-	ns
t _{HD;STA}	hold time (repeated) START condition	fast mode; C _b < 400 pF	600	-	ns
t _{LOW}	low period of the SCL clock	fast mode; C _b < 400 pF	1.3	-	μS
t _{HIGH}	high period of the SCL clock	fast mode; C _b < 400 pF	600	-	ns
t _{SU;DAT}	data set-up time	fast mode; C _b < 400 pF	100	-	ns
t _{HD;DAT}	data hold time	fast mode; C _b < 400 pF	0	900	ns
t _{r(SDA)}	SDA rise time	fast mode plus; C _b < 100 pF	30	250	ns
t _{f(SDA)}	SDA fall time	fast mode plus; C _b < 100 pF	30	250	ns
V _{hys}	hysteresis of Schmitt trigger inputs	fast mode; C _b < 400 pF	0.1 × V _{PVDD_IN}	-	V

13.2.5 Dynamic characteristics for SPI

NFC Cortex-M0 microcontroller

Table 59. Dynamic characteristics and Timing specification for SPI master interface

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SCK frequency	controlled by the host	0	6.78	MHz
t _{DS}	data set-up time		25	-	ns
t _{DH}	data hold time		25	-	ns
t _{v(Q)}	data output valid time		-	25	ns
t _{h(Q)}	data output hold time		-	25	ns
Dynamic	characteristics for SPI_SC	LK, SPIM_NSS, SPIM_MOSI	,		
t _f	fall time	$C_L = 12 \text{ pF}$; high speed; $V_{PVDD_IN} = 3.3 \text{ V}$	1	3.5	ns
		C _L = 12 pF; slow speed; V _{PVDD_IN} = 3.3 V	3	10	ns
t _r	rise time	$C_L = 12 \text{ pF}$; high speed; $V_{PVDD_IN} = 3.3 \text{ V}$	1	3.5	ns
		$C_L = 12 \text{ pF}$; slow speed; $V_{PVDD_IN} = 3.3 \text{ V}$	3	10	ns
t _f	fall time	C _L = 12 pF; high speed; V _{PVDD_IN} = 1.8 V	1	3.5	ns
		C _L = 12 pF; slow speed; V _{PVDD_IN} = 1.8 V	2	10	ns
t _r	rise time	C _L = 12 pF; high speed; V _{PVDD_IN} = 1.8 V	1	3.5	ns
		C _L = 12 pF; slow speed; V _{PVDD_IN} = 1.8 V	2	10	ns

13.2.6 Dynamic characteristics of host interface

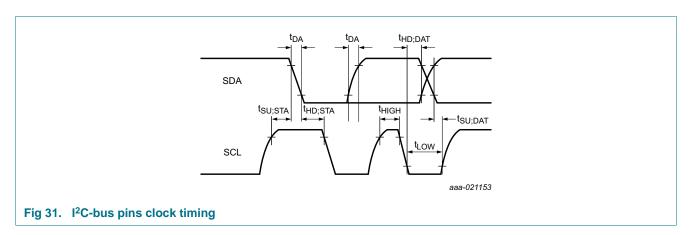
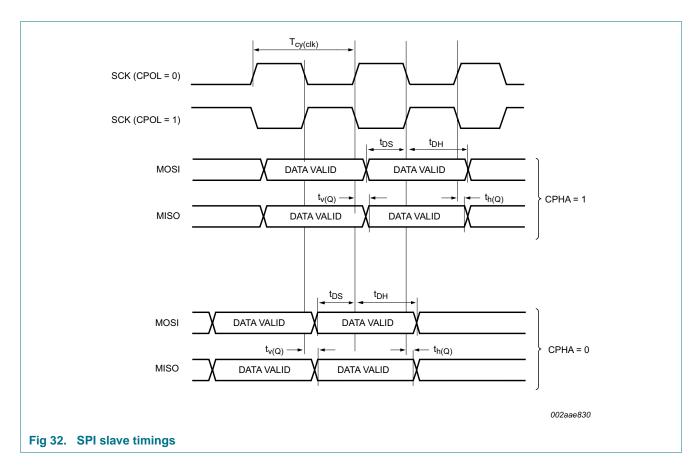


Table 60. Timing specification for I2C high speed

 $T_{amb} = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C}$

Symbol	Parameter	Conditions	Min	Max	Unit
f _{scl}	clock frequency	high speed; C _b < 100 pF	0	3.4	MHz
t _{SU;STA}	set-up time for a (repeated) START condition	high speed; C _b < 100 pF	160	-	ns
t _{HD;STA}	hold time (repeated) START condition	high speed; C _b < 100 pF	160	-	ns
t _{LOW}	low period of the SCL clock	high speed; C _b < 100 pF	160	-	ns
t _{HIGH}	high period of the SCL clock	high speed; C _b < 100 pF	60	-	ns
t _{SU;DAT}	data set-up time	high speed; C _b < 100 pF	10	-	ns
t _{HD;DAT}	data hold time	high speed; C _b < 100 pF	0	-	μS

NFC Cortex-M0 microcontroller


Table 60. Timing specification for I2C high speed

 $T_{amb} = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$

Symbol	Parameter	Conditions	Min	Max	Unit
t _{r(SDA)}	SDA rise time	high speed; C _b < 100 pF	10	80	ns
t _{f(SDA)}	SDA fall time	high speed; C _b < 100 pF	10	80	ns
V _{hys}	hysteresis of Schmitt trigger inputs	high speed; C _b < 100 pF	0.1 × V _{PVDD_IN}	-	V

Table 61. Dynamic characteristics for the I²C slave interface: ATX_B used as I²C_SDA, ATX_A used as I²C_SCL

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _f	fall time	C _L = 100 pF, R _{pull-up} = 2 K, standard and fast mode	30	-	250	ns
		C _L = 100 pF, R _{pull-up} = 1 K, high speed	10	-	80	ns
t _r	rise time	C _L = 100 pF, R _{pull-up} = 2 K, standard and fast mode	30	-	250	ns
		C _L = 100 pF, R _{pull-up} = 1 K, high speed	10	-	100	ns

NFC Cortex-M0 microcontroller

Table 62. Dynamic characteristics for SPI slave interface

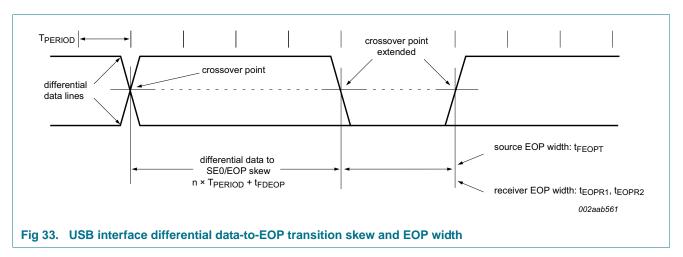
Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SCK frequency	controlled by the host	0	7	MHz
t _{DS}	data set-up time		25	-	ns
t _{DH}	data hold time		25	-	ns
t _{v(Q)}	data output valid time		-	25	ns
t _{h(Q)}	data output hold time		-	25	ns

Table 63. Dynamic characteristics for SPI slave interface: ATX_C as SPI_MISO

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _f	fall time	C_L = 12 pF; high speed; V_{PVDD_IN} = 3.3 V	1	-	3.5	ns
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 3.3 V	3	-	10	ns
t _r	rise time	C_L = 12 pF; high speed; V_{PVDD_IN} = 3.3 V	1	-	3.5	ns
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 3.3 V	3	-	10	ns
t _f	fall time	$C_L = 12 \text{ pF}$; high speed; $V_{PVDD_IN} = 1.8 \text{ V}$	1	-	3.5	ns
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 1.8 V	2	-	10	ns
t _r	rise time	C_L = 12 pF; high speed; V_{PVDD_IN} = 1.8 V	1	-	3.5	ns
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 1.8 V	2	-	10	ns

Table 64. Dynamic characteristics for HSUART ATX_ as HSU_TX, ATX_ as HSU_RTS

Symbol	Parameter	Conditions[1]	Min	Тур	Max	Unit	
t _f	fall time	high speed; V _{PVDD_IN} = 3.3 V	1	-	3.5	ns	
		slow speed; $V_{PVDD_IN} = 3.3 \text{ V}$	3	-	10	ns	
t _r	rise time	high speed; V _{PVDD_IN} = 3.3 V	1	-	3.5	ns	
		slow speed; $V_{PVDD_IN} = 3.3 \text{ V}$	3	-	10	ns	
t _f	fall time	high speed; V _{PVDD_IN} = 1.8 V	1	-	3.5	ns	
		slow speed; $V_{PVDD_IN} = 1.8 \text{ V}$	2	-	10	ns	
t _r	rise time	high speed; V _{PVDD_IN} = 1.8 V	1	-	3.5	ns	
		slow speed; $V_{PVDD_IN} = 1.8 \text{ V}$	2	-	10	ns	


^[1] $C_L=12 pF$ maximum.

NFC Cortex-M0 microcontroller

Table 65. Dynamic characteristics for USB interface

 $C_L = 50 \ pF; \ R_{pu} = 1.5 \ k\Omega \ on \ D+ \ to \ VBUS$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	10 % to 90 %	4	-	20	ns
t _f	fall time	10 % to 90 %	4	-	20	ns
t _{FRFM}	differential rise and fall time matching	t_r / t_f	-	-	109	%
V _{CRS}	output signal crossover voltage		1.3	-	2	V
t _{FEOPT}	source SE0 interval of EOP	T = 25 ℃; see <u>Figure 33</u>	160	-	175	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition	T = 25 °C; see Figure 33	-2	-	+5	ns
t _{JR1}	receiver jitter to next transition	T = 25 ℃	-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions	10 % to 90 %; T = 25 ℃	-9	-	+9	ns
t _{FEOPR}	receiver SE0 interval of EOP	must accept as EOP; see Figure 33	82	-	-	ns

13.2.7 Clock dynamic characteristics

Table 66. Dynamic characteristics for internal oscillators

 $T_{amb} = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$

	and							
Symbol	Parameter ^[1]	Conditions	Min	Typ[2]	Max	Unit		
low frequency oscillator								
f _{osc(int)}	internal oscillator frequency	$V_{DDP(VBUS)} = 3.3 \text{ V}$		365	400	kHz		
high frequency oscillator								
f _{osc(int)}	internal oscillator frequency	$V_{DDP(VBUS)} = 3.3 \text{ V}$	18	20	22	MHz		

^[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.

NFC Cortex-M0 microcontroller

Table 67. Dynamic characteristics for PLL

 $T_{amb} = -40 \, ^{\circ}\text{C} \text{ to } +85 \, ^{\circ}\text{C}$

Symbol	Parameter ^[1]	Conditions	Min	Typ[2]	Max	Unit
Δf	frequency deviation	deviation added to CLK_XTAL1 frequency on RF frequency generated using PLL	-50	-	50	ppm

^[1] Parameters are valid over operating temperature range unless otherwise specified.

13.2.8 Dynamic characteristics for power supply

Table 68. Dynamic characteristics for power supply

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
DC-to-DC i	DC-to-DC internal oscillator							
f _{osc(int)}	internal oscillator frequency	DC-to-DC converter	-	3.39	-	MHz		

13.2.9 Dynamic characteristics for boot and reset

Table 69. Dynamic characteristics for boot and reset

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{wL(RST_N)}	RST_N Low pulse width time		10	-	-	μS
t _{boot}	boot time	external PVDD supply; supply is stable at reset	-	-	320	μs
		internal PVDD_LDO supply; supply is stable at reset	-	-	2.2	ms

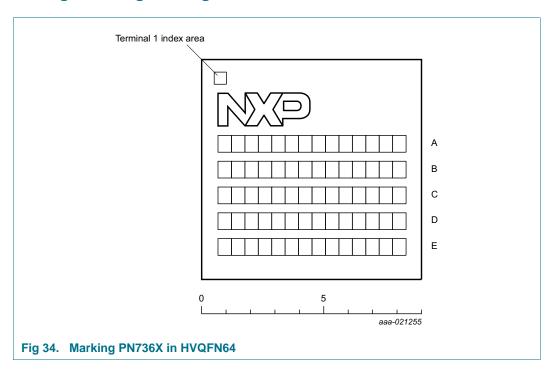
13.2.10 Dynamics characteristics for power mode

Table 70. Power modes - wake-up timings

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{wake}	wake-up time	standby mode [1]	-	-	500	μS
		suspend mode [1]	-	-	150	μS

[1] Wake-up timings are measured from the wake-up event to the point in which the user application code reads the first instruction.

^[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.


NFC Cortex-M0 microcontroller

14. Marking

Table 71. Marking codes

Type number	Marking code
PN736X	
Line A	PN7362AU-00
Line B	Diffusion Batch ID, Assembly Sequence ID
Line C	Characters: Diffusion and assembly location, date code, product version (indicated by mask version), product life cycle status. This line includes the following elements at 8 positions:
	1. Diffusion center code: Z
	2. Assembly center code: S
	3. RHF-2006 indicator: D "Dark Green"
	4. Year code (Y) 1
	5. Year code (Y) 2
	6. Week code (W) 1
	7. Week code (W) 2
	8. HW version
Line D	Empty
Line E	Empty

14.1 Package marking drawing

NFC Cortex-M0 microcontroller

15. Package outline

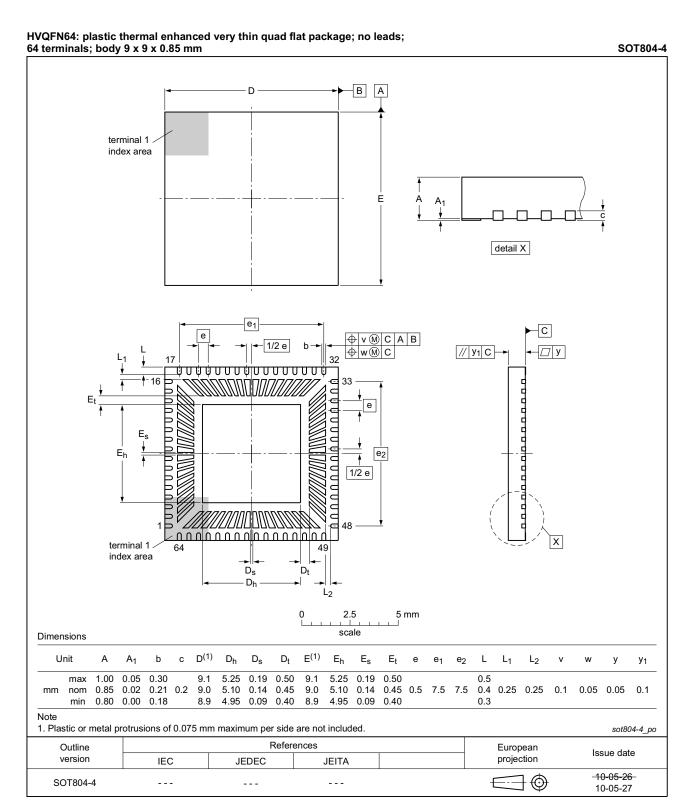


Fig 35. Package outline HVQFN64

N736X All information provided in this document is subject to legal disclaimers

© NXP Semiconductors N.V. 2016. All rights reserved.

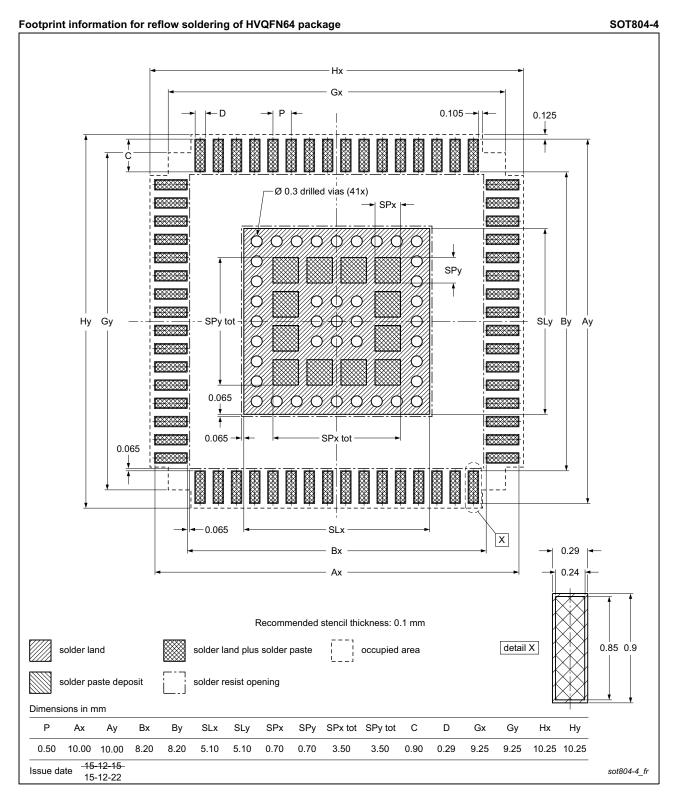


Fig 36. Footprint information for reflow soldering of HVQFN64

NFC Cortex-M0 microcontroller

16. Packing information

Moisture Sensitivity Level (MSL) evaluation has been performed according to JEDEC J-STD-020C. MSL for this package is level 3 which means 260 °C Pb-free convection reflow maximum temperature peak.

Dry packing is required with following floor conditions: 168 hours out of bag floor life at maximum ambient temperature 30 $^{\circ}$ C/60 $^{\circ}$ RH.

For information on packing, refer to the PIP relating to this product at http://www.nxp.com.

17. Abbreviations

Table 72. Abbreviations

Acronym	Description
ADC	Analog to Digital Convertor
ALM	Active Load Modulation
ASK	Amplitude Shift Keying
BPSK	Binary Phase Shift Keying
CLIF	Contactless Interface
CRC	Cyclic Redundancy Check
DPC	Dynamic Power Control
EEPROM	Electrically Erasable Programmable Read-Only Memory
GPIO	General-Purpose Input Output
I ² C	Inter-Interchanged Circuit
IC	Integrated Circuit
IAP	In-Application Programming
ISP	In-System Programming
LDO	Low DropOut
LPCD	Low-Power Card Detection
NFC	Near Field Communication
NRZ	Non-Return to Zero
NVIC	Nested Vectored Interrupt Controller
P2P	Peer-to-Peer
PLL	Phase-Locked Loop
PLM	Passive Load Modulation
SPI	Serial Peripheral Interface
SWD	Serial Wire Debug
UART	Universal Asynchronous Receiver Transmitter
USB	Universal Serial Bus

NFC Cortex-M0 microcontroller

18. Revision history

Table 73. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
PN736X v. 3.2	20161213	Product data sheet	-	PN746X_736X v.3.1				
Modifications:	Product name title a	Product name title and Descriptive title updated						
	 Editorial changes 	Editorial changes						
PN746X_736X v.3.1	20160405	Product data sheet	-	PN746X_736X v.3.0				
Modifications:	Descriptive title upd	ated						
	Section 1 "General description": updated							
PN746X_736X v.3.0	20160330	Product data sheet	-	-				

NFC Cortex-M0 microcontroller

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

PN736X

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

NFC Cortex-M0 microcontroller

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

19.4 Licenses

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems and/or end-user equipment.

RATP/Innovatron Technology

19.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NFC Cortex-M0 microcontroller

21. Contents

1	General description	. 1	8.10.1.2	ISO/IEC14443 B functionality	21
2	Features and benefits	. 1	8.10.1.3	FeliCa functionality	22
3	Applications		8.10.1.4	ISO/IEC 15693 functionality	23
4	Quick reference data		8.10.1.5	ISO/IEC18000-3 mode 3 functionality	
-			8.10.1.6	NFCIP-1 modes	24
5	Ordering information		8.10.2	Contactless interface	
6	Block diagram	. 5	8.10.2.1	Transmitter (TX)	27
7	Pinning information	. 6	8.10.2.2	Receiver (RX)	
7.1	Pinning	. 6	8.10.3	Low-Power Card Detection (LPCD)	29
7.2	Pin description		8.10.4	Active Load Modulation (ALM)	
8	Functional description		8.10.5	Dynamic Power Control (DPC)	
8.1	ARM Cortex-M0 microcontroller		8.10.5.1	RF output control	
8.2	Memories		8.10.5.2	Adaptive Waveform Control (AWC)	
8.2.1	On-chip flash programming memory		8.11	Timers	
8.2.1.1	Memory mapping		8.11.1	Features of timer 0 and timer 1	
8.2.2	EEPROM		8.11.2	Features of timer 2 and timer 3	
8.2.2.1	Memory mapping		8.12	System tick timer	
8.2.3	SRAM		8.13	Watchdog timer	
8.2.3.1	Memory mapping		8.14	Clocks	
8.2.4	ROM		8.14.1	Quartz oscillator (27.12 MHz)	
8.2.5	Memory map		8.14.2	USB PLL	
8.3	Nested Vectored Interrupt Controller (NVIC) .		8.14.3	High Frequency Oscillator (HFO)	
8.3.1	NVIC features		8.14.4	Low Frequency Oscillator (LFO)	
8.3.2	Interrupt sources		8.14.5	Clock configuration and clock gating	
8.4	GPIOs		8.15	Power management	
8.4.1	GPIO features		8.15.1	Power supply sources	
8.4.2	GPIO configuration	14	8.15.2	PN736X Power Management Unit (PMU)	
8.4.3	GPIO interrupts		8.15.2.1	Main LDO	
8.5	CRC engine 16/32 bits		8.15.2.2	PVDD_LDO	
8.6	Random Number Generator (RNG)	15	8.15.2.3	TXLDO	
8.7	Master interfaces	15	8.15.3	Power modes	
8.7.1	I ² C master interface	15	8.15.3.1	Active mode	
8.7.1.1	I ² C features	15	8.15.3.2	Standby mode	
8.7.2	SPI interface	15	8.15.3.3	Suspend mode	31
8.7.2.1	SPI features	16	8.15.3.4	Wake-up from standby mode and suspend	20
8.8	Host interfaces	16	0.45.0.5	mode	
8.8.1	High-speed UART	16	8.15.3.5	Hard Power-Down (HPD) mode	
8.8.2	I ² C host interface controller	17	8.15.4 8.15.4.1	Voltage monitoring	
8.8.2.1	I ² C host interface features	17	8.15.4.1	VBUSP monitor	
8.8.3	SPI host/Slave interface	18			
8.8.3.1	SPI host interface features	18	8.15.4.3 8.15.5		
8.8.4	USB interface			Temperature sensor	
8.8.4.1	Full speed USB device controller		8.16 8.16.1	System control	
8.9	I/O auxiliary - ISO/IEC 7816 UART - connectir		8.16.2	Brown-Out Detection (BOD)	
	an external TDA		8.16.3	APB interface and AHB-Lite	
8.10	Contactless interface - 13.56 MHz		8.16.4	External interrupts	
8.10.1	RF functionality		8.17	SWD debug interface	
8.10.1.1	ISO/IEC14443 A/MIFARE functionality	20	0.17	SWD debug interface	40

continued >>

PN736X NXP Semiconductors

NFC Cortex-M0 microcontroller

8.17.1	SWD interface features	40
9	Application design-in information	41
9.1	Power supply connection	41
9.1.1	Powering up the microcontroller	42
9.1.2	Powering up the contactless interface	42
9.2	Connecting the USB interface	44
9.3	Connecting the RF interface	44
9.4	Unconnected I/Os	45
10	Limiting values	45
11	Recommended operating conditions	47
12	Thermal characteristics	47
13	Characteristics	48
13.1	Static characteristics	48
13.1.1	GPIO static characteristics	48
13.1.2	Static characteristics for I ² C master	49
13.1.3	Static characteristics for SPI master	50
13.1.4	Static characteristics for host interface	50
13.1.5	Clock static characteristics	52
13.1.6	Static characteristics - power supply	53
13.1.7	Static characteristics for power modes	54
13.1.8	Static characteristics RF interface	55
13.2	Dynamic characteristics	55
13.2.1	Flash memory dynamic characteristics	
13.2.2	EEPROM dynamic characteristics	56
13.2.3	GPIO dynamic characteristics	56
13.2.4	Dynamic characteristics for I ² C master	57
13.2.5	Dynamic characteristics for SPI	58
13.2.6	Dynamic characteristics of host interface	59
13.2.7	Clock dynamic characteristics	62
13.2.8	Dynamic characteristics for power supply	63
13.2.9	Dynamic characteristics for boot and reset	63
13.2.10	Dynamics characteristics for power mode	63
14	Marking	64
14.1	Package marking drawing	
15	Package outline	
16	Packing information	67
17	Abbreviations	67
18	Revision history	68
19	Legal information	69
19.1	Data sheet status	69
19.2	Definitions	69
19.3	Disclaimers	69
19.4	Licenses	70
19.5	Trademarks	70
20	Contact information	70
21	Contents	71

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.