# <u>Finisar</u>

# **Product Specification**

# **Multi-Rate CWDM GBIC Transceiver with APD Receiver**

#### FTL-1621-XX

#### PRODUCT FEATURES

- All Metro data protocols from 125Mb/s to 2.7 Gb/s
- RoHS compliant and Lead Free
- Standard GBIC footprint
- Uncooled CWDM-rated DFB laser transmitter
- Class 1 laser safety
- Very low jitter
- Metal enclosure for lower EMI
- Extended voltage range
- Low power dissipation
- Extended operating temperature range: 0°C to 60°C



#### **APPLICATIONS**

 Metro Access Rings and Pointto-Point networking for SONET, Gigabit Ethernet Networks and Fibre Channel SANs

Finisar's FTL-1621-xx CWDM GBIC transceivers are designed for operation in Metro Access Rings and Point-to-Point networks using Gigabit Ethernet<sup>1</sup> and Fibre Channel<sup>2</sup> networking equipment. The FTL-1619-xx is also designed to comply to GBIC Specification Revision 5.5<sup>3\*</sup>. The transceiver is available in eight different CWDM wavelengths; and is RoHS compliant and lead-free per Directive 2002/95/EC<sup>4</sup> and Finisar Application Note AN-2038<sup>5</sup>. Digital diagnostics functions are available via an I<sup>2</sup>C serial bus.

#### PRODUCT SELECTION

| Wavelength | XX | <b>Color Code Dot</b> | Wavelength | XX | <b>Color Code Dot</b> |
|------------|----|-----------------------|------------|----|-----------------------|
| 1470 nm    | 47 | Gray                  | 1550 nm    | 55 | Yellow                |
| 1490 nm    | 49 | Violet                | 1570 nm    | 57 | Orange                |
| 1510 nm    | 51 | Blue                  | 1590 nm    | 59 | Red                   |
| 1530 nm    | 53 | Green                 | 1610 nm    | 61 | Brown                 |

#### I. Pin Out

| Pin Name   | Pin # | Sequence |
|------------|-------|----------|
| RX_LOS     | 1     | 2        |
| GND        | 2     | 2        |
| GND        | 3     | 2        |
| MOD_DEF(0) | 4     | 2        |
| MOD_DEF(1) | 5     | 2        |
| MOD_DEF(2) | 6     | 2        |
| TX_DISABLE | 7     | 2        |
| GND        | 8     | 2        |
| GND        | 9     | 2        |
| TX_FAULT   | 10    | 2        |
| GND        | 11    | 1        |
| -RX_DAT    | 12    | 1        |
| +RX_DAT    | 13    | 1        |
| GND        | 14    | 1        |
| $V_{CC}$   | 15    | 2        |
| $V_{CC}$   | 16    | 2        |
| GND        | 17    | 1        |
| +TX_DAT    | 18    | 1        |
| -TX_DAT    | 19    | 1        |
| GND        | 20    | 1        |

Table 1. GBIC to host connector pin assignment

<sup>&</sup>quot;Sequence" indicates the order in which pins make contact when the device is hot plugged. See "Table 3: Signal Definitions" in the GBIC Specification Revision 5.5<sup>3</sup> for a description of the function of each pin listed above.

#### **II.** Electrical Power Interface

The GBIC specification calls for a range of 4.75V to 5.25 volts as described in Table 2. The maximum voltage of 6V is not to be applied continuously.

| Parameter              | Symbol           | Min  | Тур  | Max  | Units | Notes/Conditions         |
|------------------------|------------------|------|------|------|-------|--------------------------|
| Supply Current         | $I_s$            |      | 280  | 350  | mA    |                          |
| Maximum Voltage        | V <sub>max</sub> |      |      | 6    | V     |                          |
| Surge Current          | $I_{ m surge}$   |      |      | 400  | mA    |                          |
| Input Voltage          | $V_{cc}$         | 4.75 | 5.00 | 5.25 | V     | Referenced to GND        |
| Power Supply Rejection | PSR              | 100  |      |      | mV    | See Note 1. Peak to Peak |

**Table 2. Electrical power interface** 

**Note 1:** Receiver sensitivity is compliant with power supply sinusoidal of 20 Hz to 1.5Mhz up to specified value applied through the recommended power supply filtering network

#### **III.** Low Speed Signals

RX\_LOS, TX\_DISABLE, and TX\_FAULT are TTL signals as described in Table 3. MOD\_DEF(1) (SCL) and MOD\_DEF(2) (SDA) are open drain CMOS signals (see section VIII, "Serial Communication Protocol"). Both MOD\_DEF(1) and MOD\_DEF(2) must be pulled up to host\_Vcc. For more detailed information, see sections 5.3.1 – 5.3.8 in the GBIC Specification Revision 5.5<sup>3</sup>.

| Parameter        | Symbol      | Min               | Max            | Units | Notes/Conditions                                                     |
|------------------|-------------|-------------------|----------------|-------|----------------------------------------------------------------------|
| GBIC Output LOW  | $V_{OL}$    | 0                 | 0.5            | V     | 4.7k to 10k pull-up to host_Vcc, measured at host side of connector  |
| GBIC Output HIGH | $V_{OH}$    | host_Vcc -<br>0.5 | host_Vcc + 0.3 | V     | 4.7k to 10k pull-up to host_Vcc, measured at host side of connector  |
| GBIC Input LOW   | $ m V_{IL}$ | 0                 | 0.8            | V     | 4.7k to 10k pull-up to Vcc,<br>measured at GBIC side of<br>connector |
| GBIC Input HIGH  | $V_{ m IH}$ | 2                 | Vcc + 0.3      | V     | 4.7k to 10k pull-up to Vcc,<br>measured at GBIC side of<br>connector |

Table 3. Low speed signals – electronic characteristics

| Parameter              | Symbol     | Min | Тур | Max  | Units | Notes/Conditions                                                         |
|------------------------|------------|-----|-----|------|-------|--------------------------------------------------------------------------|
| RX_LOS Assert Level    |            | -42 | -39 |      | dBm   | Measured on Finisar Eval Card                                            |
| RX_LOS Deassert Level  |            |     | -37 | -32  | dBm   | Measured on Finisar Eval Card                                            |
| RX_LOS Hysteresis      |            |     | 1.0 |      | dB    | Measured on Finisar Eval Card                                            |
| RX_LOS Assert Delay    | t_loss_on  |     |     | 100  | μsec  | From detection of loss of signal to assertion of RX_LOS                  |
| RX_LOS Negate Delay    | t_loss_off |     |     | 150  | μsec  | From detection of presence of signal to negation of RX_LOS               |
| TX_DISABLE Assert Time | t_off      |     |     | 1000 | μsec  | Rising edge of TX_DISABLE to fall of output signal below 10% of nominal  |
| TX_DISABLE Negate Time | t_on       |     |     | 1000 | μsec  | Falling edge of TX_DISABLE to rise of output signal above 90% of nominal |
| TX_DISABLE Reset Time  | t_reset    | 10  |     |      | μsec  | TX_DISABLE HIGH before TX_DISABLE set LOW                                |

Table 4. Low speed signal parameters

# IV. High Speed Electrical Interface

All high-speed PECL signals are AC coupled internally.

| Parameter           | Symbol           | Min | Тур | Max               | Units | Notes/Conditions                           |
|---------------------|------------------|-----|-----|-------------------|-------|--------------------------------------------|
| Data Input Voltage  | V <sub>in</sub>  | 650 |     | 2000              | mV    | PECL differential peak - peak              |
| Data Output Voltage | V <sub>out</sub> | 370 |     | 2000              | mV    | PECL differential peak - peak              |
| Duty Cycle          |                  |     | 50  |                   | %     |                                            |
| PECL rise/fall      | $T_r,T_f$        |     |     | 150               | psec  | 20%-80% Differential                       |
| Bit Error Rate      | BER              |     |     | 10 <sup>-12</sup> |       | PRBS 2 <sup>23</sup> - 1 test data pattern |
| Tx Input Impedance  | $Z_{in}$         |     | 75  |                   | ohm   | Singled ended impedance                    |
| Rx Output Impedance | Z <sub>out</sub> |     | 75  |                   | ohm   | Singled ended impedance                    |

Table 5. High speed electrical interface

#### V. Optical Parameters

| Parameter                                                                         | Symbol                         | Min     | Тур   | Max     | Units | Notes/Conditions                                                |
|-----------------------------------------------------------------------------------|--------------------------------|---------|-------|---------|-------|-----------------------------------------------------------------|
| Transmitter                                                                       |                                |         |       |         |       |                                                                 |
| Transmitter Center Wavelength                                                     | $\lambda_{\mathrm{c}}$         | (x-6.5) | (x+1) | (x+6.5) | nm    | Over temperature 0 to 60 °C case temperature. See Note 1 below. |
| Wavelength Temperature<br>Dependence                                              |                                |         | 0.09  |         | nm/°C |                                                                 |
| Spectral Width                                                                    |                                |         |       | 1       | nm    | Full Width, -20dB from peak                                     |
| Side Mode Suppression Ratio (SMSR)                                                | SMSR                           | 30      |       |         | dB    |                                                                 |
| Optical Rise/Fall Time                                                            | t <sub>r</sub> /t <sub>f</sub> |         |       | 200     | ps    | Unfiltered, 80% -20%                                            |
| Transmitter Optical Output Power                                                  | P <sub>out</sub>               | +1.0    | +3.0  | +5.0    | dBm   | Average power coupled into single mode fiber                    |
| Transmitter Extinction Ratio                                                      | ER                             | 8.2     |       |         | dB    |                                                                 |
| Transmitter Eye Opening                                                           |                                | 10      |       |         | %     | OC-48 eye mask<br>margin                                        |
| Transmitter Jitter                                                                |                                |         |       | 100     | ps    | Peak to peak, filtered                                          |
| Dispersion Penalty at 100km                                                       |                                |         |       | 3.0     | dB    | See Note 4                                                      |
| Receiver                                                                          |                                |         |       |         |       |                                                                 |
| Optical Return Loss                                                               | ORL                            | 14      |       |         | dB    |                                                                 |
| Optical Input Wavelength                                                          | $\lambda_{\mathrm{in}}$        | 1450    |       | 1620    | nm    |                                                                 |
| Receiver Jitter Generation                                                        |                                |         |       | 100     | ps    | See Note 5.<br>Peak to peak                                     |
| Receiver Optical Input Power (BER < 10 <sup>-12</sup> w/ PRBS 2 <sup>23</sup> -1) | P <sub>in</sub>                | -28     |       | -7      | dBm   | @ 2.488Gb/s,<br>PRBS 2 <sup>23</sup> -1 pattern                 |

**Table 6. Optical parameters** 

**Note 1:** The Transmitter Center Wavelength "x" is as specified by the customer. The current available wavelengths are: 1470, 1490, 1510, 1530, 1550, 1570, 1590, and 1610 nm. Please see the "Product Selection" section on page 1.

Note 2: Parameters are specified over temperature and at end of life unless otherwise noted.

Note 3: All parameters are measured on a Finisar GBIC Evaluation Card unless otherwise noted.

**Note 4:** SMF-28 fiber used. 100kms represents 2000ps/nm at 1610nm. Measured at 2.488Gb/s with a PRBS  $2^{23}$ -1 pattern at a BER< $10^{-10}$ .

Note 5: Jitter added by receiver.

## VI. General Specifications

| Parameter           | Symbol | Min    | Тур | Max | Units | Notes/Conditions                                                         |
|---------------------|--------|--------|-----|-----|-------|--------------------------------------------------------------------------|
| Data Rate           | BR     | 0.125* |     | 2.7 |       | *Fast Ethernet compatible. Not compliant w/ all FE specifications        |
| Total System Budget |        | 27     | 31  |     |       | @2.5 Gb/s, BER <10 <sup>-12</sup> w/PRBS 2 <sup>-23</sup> -1. See Note 1 |

Note 1: Total system budget is defined as  $P_{out} - P_{in}$  - typical connector losses

 Table 7. General specifications

# VII. Environmental Specifications

| Parameter      | Symbol    | Min | Тур | Max | Units | Notes/Conditions                                 |
|----------------|-----------|-----|-----|-----|-------|--------------------------------------------------|
| Operating Temp | $T_{op}$  | 0   |     | 60  | °C    | Case temperature                                 |
| Storage Temp   | $T_{sto}$ | -10 |     | 85  | °C    |                                                  |
| Eye Safety     |           |     |     |     |       | CDRH and IEC-825 Class 1 Laser Product<br>Note 1 |

Note 1: Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated July 26, 2001.

**Table 8. Environmental specifications** 

#### VIII. Serial Communication Protocol

All Finisar optical GBICs implement serial identification features described for 'Module Definition "4" as outlined in Annex D of the GBIC Specification<sup>3</sup>. These GBICs use an Atmel AT24C01A 128 byte E<sup>2</sup>PROM at address A0H. For details on interfacing with the E<sup>2</sup>PROM, see the Atmel data sheet titled "AT24C01A/02/04/08/16 2-Wire Serial CMOS E<sup>2</sup>PROM".

Finisar's CWDM GBICs also support extended diagnostic features as described in Finisar Applications Note AN-2030, "Digital Diagnostic Monitoring Interface for Optical Transceivers". A controller IC that monitors system parameters such as laser current, module temperature, transmitter power, and received power is accessible at address A2H.

| Parameter                                                            | Symbol             | Min | Тур | Max     | Units | Notes/Conditions         |
|----------------------------------------------------------------------|--------------------|-----|-----|---------|-------|--------------------------|
| I <sup>2</sup> C Clock for Atmel<br>(A0H) and Controller<br>IC (A2H) | C <sub>atmel</sub> | 0   |     | 100,000 | Hz    | Bus can be driven blind. |

**Table 9. I<sup>2</sup>C Timing Requirements** 

## IX. Mechanical Specifications

Finisar CWDM GBICs conform to the mechanical specifications outlined in the GBIC Specification Revision 5.5, Section  $6^3$ .

| Parameter       | Symbol  | Min | Тур | Max | Units   | Notes/Conditions       |
|-----------------|---------|-----|-----|-----|---------|------------------------|
| GBIC insertion  | $F_{I}$ | 0   |     | 20  | Newtons | ~4.5 lbs               |
| GBIC extraction | $F_{E}$ | 0   |     | 15  | Newtons | ~3.3 lbs               |
| GBIC retention  | $F_R$   | 130 |     | N/A | Newtons | straight out ~29.3 lbs |

Table 10. Insertion, extraction, and retention forces

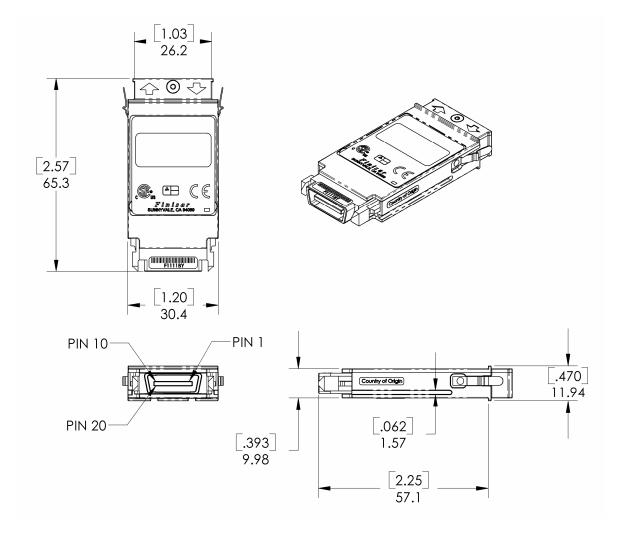



Figure 1. FTL-1621-XX Outline Drawing

#### X. References

- 1. IEEE Std 802.3, 2000 Edition, Clause 38. IEEE Standards Department, 2000.
- 2. "Fibre Channel Physical and Signaling Interface (FC-PH, FC-PH2, FC-PH3)". American National Standard for Information Systems.
- 3. "Gigabit Interface Converter (GBIC) Revision 5.5". (\*) Sun Microsystems Computer Company et. al., August 16, 1999.http://playground.sun.com/pub/OEmod/
- 4. Directive 2002/95/EC of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." January 27, 2003.
- 5. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 6. "Application Note AN-2030: Digital Diagnostic Monitoring Interface for SFP Optical Transceivers", Finisar Corporation, April 2002.
- 7. "AT24C01A/02/04/08/16 2-Wire Serial CMOS E<sup>2</sup>PROM". Atmel Corporation. www.Atmel.com
- (\*) Neither GBIC, FC-PH, nor IEEE802.3 specifies a 14xx/15xx/16xx nm single mode interface. The FTL-1621-XX complies with these specifications except for the following optical parameters: laser wavelength, receiver sensitivity, and transmit output power. See Table 6 for details.

#### **XI.** For More Information

Finisar Corporation 1308 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. (408) 548-1000 Fax (408) 541-6138 sales@finisar.com www.finisar.com