SY87700AL ## Low-Power, 3.3V, 32Mbps to 208Mbps AnyRate[®] Clock and Data Recovery ### **General Description** The SY87700AL is a complete clock recovery and data retiming integrated circuit for data rates from 32Mbps up to 208Mbps NRZ. The device is ideally suited for SONET/SDH/ATM applications and other high-speed data transmission systems. Clock recovery and data retiming is performed by synchronizing the on-chip VCO directly to the incoming data stream. The VCO center frequency is controlled by the reference clock frequency and the selected divide ratio. On-chip clock generation is performed through the use of a frequency multiplier PLL with a byte rate source as reference. The SY87700AL also includes a link fault detection circuit. Data sheets and support documentation can be found on Micrel's web site at: www.micrel.com. AnyRate[®] #### **Features** - 3.3V power supply - SONET/SDH/ATM compatible - Clock and data recovery from 32Mbps up to 208Mbps NRZ data stream; clock generation from 32Mbps to 208Mbps - Two on-chip PLLs: one for clock generation and another for clock recovery - · Selectable reference frequencies - Differential PECL high-speed serial I/O - · Line receiver input: no external buffering needed - · Link fault indication - 100K ECL-compatible I/O - Industrial temperature range (−40°C to +85°C) - Low power: fully compatible with Micrel's SY87700V, but with 30% less power - Available in 32-pin EPAD-TQFP and 28-pin EPAD SOIC packages, (28-pin SOIC is available, but NOT recommended for new designs.) # **Applications** - SONET/SDH/ATM OC-1 and OC-3 - Fast Ethernet, SMPTE 259 - Proprietary architecture up to 208Mbps AnyRate is a registered trademark of Micrel, Inc. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • I #d (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrlecom # Ordering Information⁽¹⁾ | Part Number | Package
Type | Operating
Range | Package
Marking | Lead
Finish | |----------------------------|-----------------|--------------------|--|-------------------| | SY87700ALZG ⁽²⁾ | Z28-1 | Industrial | SY87700ALZG with
Pb-Free bar-line indicator | NiPdAu
Pb-Free | | SY87700ALHG ⁽²⁾ | H32-1 | Industrial | SY87700ALHG with
Pb-Free bar-line indicator | NiPdAu
Pb-Free | #### Notes: - 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only. - 2. Pb-Free package is recommended for new designs. ## **Pin Configuration** 28-Pin SOIC (Z28-1) 32-Pin EPAD-TQFP (H32-1) ## **Pin Description** ### Inputs 22, 21 19, 18 11, 12 16, 15 21, 20 18, 17 9, 10 15, 14 RCLKP. **RCLKN** TCLKP, TCLKN PLLSP, **PLLSN** PLLRP, **PLLRN** LOW). synthesis PLL. | Some state of the differential receive serial data stream. An internal receive PLL recovers the embedded clock (RCLK) and data (RDOUT) information The incoming data rate can be within one of eight frequency ranges depending on the state of the FREQSEL pins. See "Frequency Selection Table. Reference Clock. TTL Input: This input is used as the reference for the internal frequency synthesizer and the "training" frequency for the receive PLL to keep it centered in the absence of data coming in on the RDIN input. This input controls the recovery function of the Receive PLL and can be driven by the carrier detect output of optical modules or from external transition detection circuitry. When this input is HIGH the input data stream (RDIN) is recovered normally by the Receive PLL. When this input is LOW the data on the inputs RDIN will be internal forced to a constant LOW, the data outputs RDOUT will remain LOW, the Link Fault Indicator output LFIN forced LOW and the clock recovery PLL forced to lock onto the clock frequency generated from REFCLK. FREQSEL1 Frequency Select. TTL Inputs: These inputs select the output clock frequency as shown in the "Frequency Selection" Table. PREQSEL1 DIVSEL2 Divider Select. TTL Inputs: These inputs select the ratio between the output clock frequency (RCLKTCLK) and the REFCLK input frequency as show the "Reference Frequency Selection" Table. Clock Select. TTL Input: This input is used to select either the recovered clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs. LFIN Link Fault Indicator. TTL Output: This output indicates the status of the indata stream RDIN. Active HIGH signal is indicating when the internal cloc recovery PLL has locked onto the incoming data stream. LFIN will go HIGCD is HIGGH and RDIN is within the frequency range of the Receive PLL (1000pm). LFIN is an asynchronous output. | Pin Number
(28-SOIC) | Pin Number
(32-TQFP) | Pin Name | Pin Name | |--|-------------------------|-------------------------|----------|--| | internal frequency synthesizer and the "training" frequency for the receive PLL to keep it centered in the absence of data coming in on the RDIN ing 27 26 CD Carrier Detect. PECL Input: This input controls the recovery function of it Receive PLL and can be driven by the carrier detect output of optical modules or from external transition detection circuitry. When this input is HIGH the input data stream (RDIN) is recovered normally by the Receive PLL. When this input is LOW the data on the inputs RDIN will be internal forced to a constant LOW, the data outputs RDOUT will remain LOW, the Link Fault Indicator output LFIN forced LOW and the clock recovery PLL forced to lock onto the clock frequency generated from REFCLK. 6 4 FREQSEL1 Frequency Select. TTL Inputs: These inputs select the output clock frequency as shown in the "Frequency Selection" Table. 7 FREQSEL3 3 32 DIVSEL1 Divder Select. TTL Inputs: These inputs select the ratio between the out clock frequency (RCLK/TCLK) and the REFCLK input frequency as show the "Reference Frequency Selection" Table. 17 16 CLKSEL Clock Select. TTL Input: This input is used to select either the recovered clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs. Dutputs 2 31 LFIN Link Fault Indicator. TTL Output: This output indicates the status of the indata stream RDIN. Active HIGH signal is indicating when the internal clock of the HIGH and RDIN is within the frequency range of the Receive PLL (100ppm). LFIN is an asynchronous output. 25 24 RDOUTP Receive Data Output. Differential PECL: These ECL 100k outputs represent the recovered data from the input data stream (RDIN). This recovered data from the input data stream (RDIN). This recovered data | | 2,
3 | | depending on the state of the FREQSEL pins. See "Frequency Selection" | | Receive PLL and can be driven by the carrier detect output of optical modules or from external transition detection circuitry. When this input is HIGH the input data stream (RDIN) is recovered normally by the Receive PLL. When this input is LOW the data on the inputs RDIN will be internal forced to a constant LOW, the data outputs RDOUT will remain LOW, the Link Fault Indicator output LFIN forced LOW and the clock recovery PLL forced to lock onto the clock frequency generated from REFCLK. 6 | 7 | 5 | REFCLK | Reference Clock. TTL Input: This input is used as the reference for the internal frequency synthesizer and the "training" frequency for the receiver PLL to keep it centered in the absence of data coming in on the RDIN inputs | | 8 6 FREQSEL2 FREQSEL3 range as shown in the "Frequency Selection" Table. 3 32 DIVSEL1 Divider Select. TTL Inputs: These inputs select the ratio between the out clock frequency (RCLK/TCLK) and the REFCLK input frequency as show the "Reference Frequency Selection" Table. 17 16 CLKSEL Clock Select. TTL Input: This input is used to select either the recovered clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs. Dutputs 2 31 LFIN Link Fault Indicator. TTL Output: This output indicates the status of the indata stream RDIN. Active HIGH signal is indicating when the internal clorecovery PLL has locked onto the incoming data stream. LFIN will go HIG CD is HIGH and RDIN is within the frequency range of the Receive PLL (1000ppm). LFIN is an asynchronous output. 25 24 RDOUTP Receive Data Output. Differential PECL: These ECL 100k outputs repress the recovered data from the input data stream (RDIN). This recovered data | 27 | 26 | CD | modules or from external transition detection circuitry. When this input is HIGH the input data stream (RDIN) is recovered normally by the Receive PLL. When this input is LOW the data on the inputs RDIN will be internally forced to a constant LOW, the data outputs RDOUT will remain LOW, the Link Fault Indicator output LFIN forced LOW and the clock recovery PLL | | 25 DIVSEL2 clock frequency (RCLK/TCLK) and the REFCLK input frequency as show the "Reference Frequency Selection" Table. 17 16 CLKSEL Clock Select. TTL Input: This input is used to select either the recovered clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs. 2 31 LFIN Link Fault Indicator. TTL Output: This output indicates the status of the ir data stream RDIN. Active HIGH signal is indicating when the internal clorecovery PLL has locked onto the incoming data stream. LFIN will go HIGCD is HIGH and RDIN is within the frequency range of the Receive PLL (1000ppm). LFIN is an asynchronous output. 25 24 RDOUTP Receive Data Output. Differential PECL: These ECL 100k outputs represented the recovered data from the input data stream (RDIN). This recovered data | 8 | 6 | FREQSEL2 | Frequency Select. TTL Inputs: These inputs select the output clock frequency range as shown in the "Frequency Selection" Table. | | Clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs. 2 31 LFIN Link Fault Indicator. TTL Output: This output indicates the status of the ir data stream RDIN. Active HIGH signal is indicating when the internal clorecovery PLL has locked onto the incoming data stream. LFIN will go HIG CD is HIGH and RDIN is within the frequency range of the Receive PLL (1000ppm). LFIN is an asynchronous output. 25 24 RDOUTP Receive Data Output. Differential PECL: These ECL 100k outputs represent the recovered data from the input data stream (RDIN). This recovered data | | - | | Divider Select. TTL Inputs: These inputs select the ratio between the output clock frequency (RCLK/TCLK) and the REFCLK input frequency as shown in the "Reference Frequency Selection" Table. | | 2 31 LFIN Link Fault Indicator. TTL Output: This output indicates the status of the ir data stream RDIN. Active HIGH signal is indicating when the internal clorecovery PLL has locked onto the incoming data stream. LFIN will go HIG CD is HIGH and RDIN is within the frequency range of the Receive PLL (1000ppm). LFIN is an asynchronous output. 25 24 RDOUTP Receive Data Output. Differential PECL: These ECL 100k outputs represent the recovered data from the input data stream (RDIN). This recovered data | 17 | 16 | CLKSEL | Clock Select. TTL Input: This input is used to select either the recovered clock of the receiver PLL (CLKSEL = HIGH) or the clock of the frequency synthesizer (CLKSEL = LOW) to the TCLK outputs. | | data stream RDIN. Active HIGH signal is indicating when the internal close recovery PLL has locked onto the incoming data stream. LFIN will go HIGCD is HIGH and RDIN is within the frequency range of the Receive PLL (1000ppm). LFIN is an asynchronous output. 25 24 RDOUTP Receive Data Output. Differential PECL: These ECL 100k outputs represent the recovered data from the input data stream (RDIN). This recovered data | Outputs | | | | | 24 23 RDOUTN the recovered data from the input data stream (RDIN). This recovered data | 2 | 31 | LFIN | | | | | | | Receive Data Output. Differential PECL: These ECL 100k outputs represent the recovered data from the input data stream (RDIN). This recovered data is specified against the rising edge of RCLK. | Clock Output. Differential PECL: These ECL 100k outputs represent the Clock Output. Differential PECL: These ECL 100k outputs represent either the recovered clock (CLKSEL = HIGH) used to sample the recovered data (RDOUT) or the transmit clock of the frequency synthesizer (CLKSEL = Clock Recovery PLL Loop Filter: External loop filter pins for the receiver PLL. Clock Synthesis PLL Loop Filter: External loop filter pins for the clock recovered clock used to sample the recovered data (RDOUT). ### **Power and Ground** | Pin Number
(28-SOIC) | Pin Number
(32-TQFP) | Pin Name | Pin Name | |-------------------------|-------------------------|----------|--------------------------------------| | 28 | 27, 28 | VCC | Supply Voltage ⁽¹⁾ | | 1 | 29, 30 | VCCA | Analog Supply Voltage ⁽¹⁾ | | 20, 23 | 19, 22 | VCCO | Output Supply Voltage ⁽¹⁾ | | 13, 14 | 12, 13 | GND | Ground. | | 10 | 1, 8 | NC | No connect. | | | 11 | GNDA | Analog Ground. | ### Note: 1. VCC, VCCA, VCCO must be the same value. # **Absolute Maximum Ratings**(1) | Supply Voltage (V _{CC}) | 0.5V to +4.0V | |---------------------------------------|-------------------------| | Input Voltage (V _{IN}) | 0.5V to V _{CC} | | Output Current (I _{OUT}) | | | Continuous | ±50mA | | Surge | ±100mA | | Lead Temperature (soldering, 20sec.). | +260℃ | | Storage Temperature (T _s) | 65℃ to +150℃ | | | | # Operating Ratings⁽²⁾ | Input Voltage (V _{CC})Ambient Temperature (T _A)Junction Thermal Resistance ⁽³⁾ | | |---|---------| | SOIC $(\theta_{JA})^{(4)}$ | 80℃/W | | EPAD-SOIC (θ _{JA}) ⁽⁵⁾ | 27.3℃/W | | EPAD-TQFP $(\theta_{JA})^{(5)}$ | | | Olfpm airflow | 27.6℃/W | | 200lfpm airflow | 22.6℃/W | | 500lfpm airflow | 20.7℃/W | ### **DC Electrical Characteristics** | Symbol | Parameter | Condition | Min | Тур | Max | Units | |--------|----------------------|-----------|------|-----|------|-------| | Vcc | Power Supply Voltage | | 3.15 | 3.3 | 3.45 | V | | Icc | Power Supply Current | | | 120 | 160 | mA | ### PECL 100K DC Electrical Characteristics $V_{CC} = V_{CCO} = V_{CCA} = 3.3V \pm 5\%$; $T_A = -40\%$ to +85%, unless otherwise noted. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------|---------------------|-----------------------------------|------------------------|-----|------------------------|-------| | V _{IH} | Input HIGH Voltage | | V _{CC} -1.165 | | V _{CC} -0.880 | V | | V _{IL} | Input LOW Voltage | | V _{CC} -1.810 | | V _{CC} -1.475 | V | | V _{OH} | Output HIGH Voltage | 50Ω to V _{CC} -2V | V _{CC} -1.075 | | V _{CC} -0.830 | V | | V _{OL} | Output LOW Voltage | 50Ω to V _{CC} -2V | V _{CC} -1.860 | | V _{CC} -1.570 | V | | I _{IL} | Input LOW Current | $V_{IN} = V_{IL}$ (Min) | 0.5 | | | μΑ | ### **TTL DC Electrical Characteristics** $V_{CC} = V_{CCO} = V_{CCA} = 3.3V \pm 5\%$; $T_A = -40$ °C to +85°C, unless otherwise noted. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------|------------------------------|--|------|-----|------|----------| | V _{IH} | Input HIGH Voltage | | 2.0 | | Vcc | V | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | | V _{OH} | Output HIGH Voltage | I _{OH} = -0.4mA | 2.0 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 4mA | | | 0.5 | V | | I _{IH} | Input HIGH Current | $V_{IN} = 2.7V$, $V_{CC} = Max$.
$V_{IN} = V_{CC}$, $V_{CC} = Max$. | -175 | | +100 | μA
μA | | I _{IL} | Input LOW Current | $V_{IN} = 0.5V$, $V_{CC} = Max$. | -300 | | | μA | | Ios | Output Short-Circuit Current | V _{OUT} = 0V, (Max., 1 sec.) | -15 | | -100 | mA | ### Notes: - 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. - 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings. - 3. Airflow of 500lfpm recommended for 28-pin SOIC. - 4. 28-pin SOIC package is NOT recommended for new designs. - 5. Using JEDEC standard test boards with die attach pad soldered to PCB. See www.amkor.com for additional package details. ## **AC Electrical Characteristics** $V_{CC} = V_{CCO} = V_{CCA} = 3.3 V \pm 5\%; T_A = -40 °C \text{ to } +85 °C, \text{ unless otherwise noted.}$ | Symbol | Parameter | Condition | Min | Тур | Max | Units | |---------------------------------|--|---|-------------------------------|-----|------|------------| | f _{VCO} | VCO Center Frequency | f _{REFCLK} x Byte Rate | 750 | | 1250 | MHz | | Δf_{VCO} | VCO Center Frequency
Tolerance | Nominal | | 5 | | % | | t _{ACQ} | Acquisition Lock Time | 50Ω to V _{CC} -2V | | | 15 | μs | | t _{CPWH} | REFCLK Pulse Width HIGH | 50Ω to V _{CC} -2V | 4 | | | ns | | t _{CPWL} | REFCLK Pulse Width LOW | V _{IN} = V _{IL} (Min) | 4 | | | ns | | t _{ir} | REFCLK Input Rise Time | | | 0.5 | 2 | ns | | t _{ODC} | Output Duty Cycle (RCLK/TCLK) | | 45 | | 55 | % of
UI | | t _r , t _f | ECL Output Rise/Fall Time (20% to 80%) | 50Ω to V_{CC} -2 | 100 | | 400 | ps | | t _{SKEW} | Recovered Clock Skew | | -200 | | +200 | ps | | t _{DV} | Data Valid | | 1/(2xf _{RCLK}) -200 | | | ps | | t _{DH} | Data Hold | | 1/(2xf _{RCLK}) -200 | | | ps | # **Timing Waveforms** ### **Functional Block** ### **Functional Description** #### **Clock Recovery** Clock recovery, as shown in the block diagram, generates a clock that is at the same frequency as the incoming data bit rate at the serial data input. The clock is phase aligned by a PLL so that it samples the data in the center of the data eye pattern. The phase relationship between the edge transitions of the data and those of the generated clock are compared by a phase/frequency detector. Output pulses from the detector indicate the required direction of phase correction. These pulses are smoothed by an integral loop filter. The output of the loop filter controls the frequency of the Voltage Controlled Oscillator (VCO), which generates the recovered clock. Frequency stability, without incoming data, guaranteed by an alternate reference input (REFCLK) that the PLL locks onto when data is lost. If the frequency of the incoming signal varies by greater than approximately 1000ppm with respect to the synthesizer frequency, the PLL will be declared out of lock, and the PLL will lock to the reference clock. The loop filter transfer function is optimized to enable the PLL to track the jitter, yet tolerate the minimum transition density expected in a received SONET data signal. This transfer function yields a 30µs data stream of continuous 1's or 0's for random incoming NRZ data. #### **Lock Detect** The SY87700AL contains a link fault indication circuit, which monitors the integrity of the serial data inputs. If the received serial data fails the frequency test, then the PLL will be forced to lock to the local reference clock. This will maintain the correct frequency of the recovered clock output under loss of signal or loss of lock conditions. If the recovered clock frequency deviates from the local reference clock frequency by more than approximately 1000ppm, the PLL will be declared out of lock. The lock detect circuit will poll the input data stream in an attempt to reacquire lock to data. If the recovered clock frequency is determined to be within approximately 1000ppm, the PLL will be declared in lock and the lock detect output will go active. During the interval when the CDR is not locked onto the RDIN input, the LFIN output will not be a static LOW, but will be changing. . # **Frequency Selection Table** | FREQSEL1 | FREQSEL2 | FREQSEL3 | f _{VCO} /f _{RCLK} | f _{RCLK} Data Rates (Mbps) | |----------|----------|------------------|-------------------------------------|-------------------------------------| | 0 | 1 | 1 | 6 | 125 to 208 | | 1 | 0 | 0 | 8 | 94 to 156 | | 1 | 0 | 1 | 12 | 63 to 104 | | 1 | 1 | 0 | 16 | 47 to 78 | | 1 | 1 | 1 | 24 | 32 to 52 | | 0 | 1 | 0 | _ | undefined | | 0 | 0 | X ⁽²⁾ | _ | undefined | #### Notes: 1. SY87700AL operates from 32MHz to 208MHz. For higher speed applications, the SY87701AL operates from 28MHz to 1300MHz. 2. X is a DON'T CARE. ## **Reference Frequency Selection** | DIVSEL1 | DIVSEL2 | f _{RCLK} /f _{REFCLK} | |---------|---------|--| | 0 | 0 | 8 | | 0 | 1 | 10 | | 1 | 0 | 16 | | 1 | 1 | 20 | # Loop Filter Components⁽¹⁾ R5 = 350Ω C3 = 1.0μ F (X7R Dielectric) R5 = 680Ω C3 = 1.0μ F (X7R Dielectric) #### Note 1. Suggested values. Values may vary for different applications. # **Application Example AC-Coupled I/O** # Application Example DC-Coupled I/O # **Related Product and Support Documentation** | Part Number | Function | Data Sheet Link | |---------------|--|--| | SY87701AL | Low-Power 3.3V, 28Mbps to 1300Mbps
AnyRate [®] Clock and Data Recovery | www.micrel.com/product-info/products/sy87701al.shtml | | HBW Solutions | New Products and Applications | www.micrel.com/product-info/products/solutions.shtml | # **Bill of Materials (AC-Coupled)** | Item | Part Number | Manufacturer | Description | Qty. | |-----------------------------------|-----------------|--------------------------------------|---|------| | C6 | 293D685X0025B2T | Vishay ⁽¹⁾ | 6.8μF, 25V, Tantalum Capacitor, Size B | 1 | | C7 | VJ206Y103JXJAT | Vishay ⁽¹⁾ | 0.01µF Ceramic Capacitor, Size 1206, X7R Dielectric | 1 | | C10, C11 | VJ0603Y105JXJAT | Vishay ⁽¹⁾ | 1.0µF Ceramic Capacitor, Size 0603, X7R Dielectric | 2 | | C12-C15,
C18, C19,
C27, C28 | VJ0402Y104JXJAT | Vishay ⁽¹⁾ | 0.1μF Ceramic Capacitor, Size 0402, X7R Dielectric | 8 | | C20-C26 | VJ0402Y104JXJAT | Vishay ⁽¹⁾ | 0.01µF Ceramic Capacitor, Size 1206, X7R Dielectric | 7 | | D1 | P301-ND | Panasonic ⁽²⁾ | LED Diode, T-1 3/4, Red Clear | 1 | | D2 | P300-ND/P301-ND | Vishay ⁽¹⁾ | T-1 3/4, Red LED | 1 | | J2, J3, J4,
J6 | 111-0702-001 | Johnson
Components ⁽³⁾ | Red, Insulated Thumb Nut Binding Post (Jumped Together) | 4 | | J5 | BLM21A102F | Murata ⁽⁴⁾ | Black, Insulated Thumb Nut Binding Post, GND (Jumped to V _{EE}) | 1 | | Q1 | 459-2598-5-ND | NTE ⁽⁵⁾ | 2N2222A Buffer/Driver Transistor, NPN | 1 | | R1 | CRCW04023500F | Vishay ⁽¹⁾ | 350Ω Resistor, 2%, Size 0402 | 1 | | R2 | CRCW04026800F | Vishay ⁽¹⁾ | 680Ω Resistor, 2%, Size 0402 | 1 | | R3-R10 | CRCW04021001F | Vishay ⁽¹⁾ | 1kΩ Pull-up Resistor, 2%, Size 1206 | 8 | | R11-R16,
R28-R30,
R32 | CRCW04021820F | Vishay ⁽¹⁾ | 182Ω Resistor, 2%, Size 0402 | 10 | | R21 | CRCW06031300F | Vishay ⁽¹⁾ | 130Ω Resistor, 2%, Size 0603 | 1 | | R22 | CRCW04021820F | Vishay ⁽¹⁾ | 12.1kΩ Resistor, 2%, Size 1206 | 1 | | R23, R24 | CRCW04022825F | Vishay ⁽¹⁾ | 82Ω Resistor, 2%, Size 0402 | 2 | | R25, R26 | CRCW04021300F | Vishay ⁽¹⁾ | 130Ω Resistor, 2%, Size 0402 | 2 | | R27 | CRCW0402OOR0F | Vishay ⁽¹⁾ | 0Ω Resistor, 2%, Size 0402 | 1 | | R31 | CRCW04025000F | Vishay ⁽¹⁾ | 50Ω Resistor, 2%, Size 0402 | 1 | | SMA1-
SMA10 | 142-0701-851 | Johnson
Components ⁽³⁾ | End Launch SMA Jack | 10 | | SP1-SP6 | | | Solder Jump Option | 6 | | SW1 | CT2068-ND | CTS ⁽⁶⁾ | 8-Position, Top Actuated Slide Dip Switch | 1 | | U1 | SY87700AL | Micrel, Inc. ⁽⁷⁾ | Low-Power 3.3V 28Mbps to 216Mbps AnyRate® Clock and Data Recovery | 1 | | U2 | SY89322V | Micrel, Inc. ⁽⁷⁾ | 3.3/5V Dual LVTTL/LVCMOS-to-Differential LVPECL Translator | 1 | #### Notes: 1. Vishay: www.vishay.com. 2. Panasonic: <u>www.panasonic.com</u>. 3. Johnson Components: <u>www.johnson-components.com</u>. Murata: www.murata.com. NTE: www.nte.com. CTS: www.cts.com. 7. Micrel, Inc: <u>www.micrel.com</u>. # **Bill of Materials (DC-Coupled)** | Item | Part Number | Manufacturer | Description | Qty. | |-----------------------------------|-----------------|--------------------------------------|---|------| | C6 | 293D685X0025B2T | Vishay ⁽¹⁾ | 6.8μF, 25V, Tantalum Capacitor, Size B | 1 | | C7 | VJ206Y103JXJAT | Vishay ⁽¹⁾ | 0.01µF Ceramic Capacitor, Size 1206, X7R Dielectric | 1 | | C10, C11 | VJ0603Y105JXJAT | Vishay ⁽¹⁾ | 1.0µF Ceramic Capacitor, Size 0603, X7R Dielectric | 2 | | C12-C15,
C18, C19,
C27, C28 | VJ0402Y104JXJAT | Vishay ⁽¹⁾ | 0.1µF Ceramic Capacitor, Size 0402, X7R Dielectric | 8 | | C20-C26 | VJ0402Y104JXJAT | Vishay ⁽¹⁾ | 0.01µF Ceramic Capacitor, Size 1206, X7R Dielectric | 7 | | D1 | P301-ND | Panasonic ⁽²⁾ | LED Diode, T-1 3/4, Red Clear | 1 | | D2 | P300-ND/P301-ND | Vishay ⁽¹⁾ | T-1 3/4, Red LED | 1 | | J2, J3, J4,
J6 | 111-0702-001 | Johnson
Components ⁽³⁾ | Red, Insulated Thumb Nut Binding Post (Jumped Together) | 4 | | J5 | BLM21A102F | Johnson
Components ⁽³⁾ | Black, Insulated Thumb Nut Binding Post, GND (Jumped to V _{EE}) | 1 | | Q1 | 459-2598-5-ND | NTE ⁽⁵⁾ | 2N2222A Buffer/Driver Transistor, NPN | 1 | | R1 | CRCW04023500F | Vishay ⁽¹⁾ | 350Ω Resistor, 2%, Size 0402 | 1 | | R2 | CRCW04026800F | Vishay ⁽¹⁾ | 680Ω Resistor, 2%, Size 0402 | 1 | | R3-R10 | CRCW04021001F | Vishay ⁽¹⁾ | 1kΩ Pull-up Resistor, 2%, Size 1206 | 8 | | R15, R16,
R30, R32 | CRCW04021820F | Vishay ⁽¹⁾ | 182Ω Resistor, 2%, Size 0402 | 10 | | R21 | CRCW06031300F | Vishay ⁽¹⁾ | 130Ω Resistor, 2%, Size 0603 | 1 | | R22 | CRCW04021820F | Vishay ⁽¹⁾ | 12.1kΩ Resistor, 2%, Size 1206 | 1 | | R23, R24 | CRCW04022825F | Vishay ⁽¹⁾ | 82Ω Resistor, 2%, Size 0402 | 2 | | R27 | CRCW0402OOR0F | Vishay ⁽¹⁾ | 0Ω Resistor, 2%, Size 0402 | 1 | | R31 | CRCW04025000F | Vishay ⁽¹⁾ | 50Ω Resistor, 2%, Size 0402 | 1 | | SMA1-
SMA10 | 142-0701-851 | Johnson
Components ⁽³⁾ | End Launch SMA Jack | 10 | | SP1-SP6 | | | Solder Jump Option | 6 | | SW1 | CT2068-ND | CTS ⁽⁶⁾ | 8-Position, Top Actuated Slide Dip Switch | 1 | | U1 | SY87700AL | Micrel, Inc. ⁽⁷⁾ | Low-Power 3.3V 28Mbps to 216Mbps AnyRate [®] Clock and Data Recovery | 1 | | U2 | SY89322V | Micrel, Inc. ⁽⁷⁾ | 3.3/5V Dual LVTTL/LVCMOS-to-Differential LVPECL Translator | 1 | ### Notes: 5. Vishay: www.vishay.com.6. Panasonic: www.panasonic.com. 7. Johnson Components: <u>www.johnson-components.com</u>. Murata: www.murata.com. NTE: www.nte.com. CTS: www.cts.com. 7. Micrel, Inc: <u>www.micrel.com</u>. SY87700AL Micrel, Inc. ## Appendix A ### **Layout and General Suggestions** - 1. Establish controlled impedance stripline, microstrip, or coplanar construction techniques. - Signal paths should have approximately the same width as the device pads. - All differential paths are critical timing paths, where skew should be matched to within ±10ps. - Signal trace impedance should not vary more than ±5%. If in doubt, perform TDR analysis of all high-speed signal traces. - Maintain compact filter networks as close to filter pins as possible. Provide ground plane relief under filter path to reduce stray capacitance. Be careful of crosstalk coupling into the filter network. - Maintain low jitter on the REFCLK input. Isolate the XTAL oscillator from power supply noise by adequately decoupling. Keep XTAL oscillator close to device, and minimize capacitive coupling from adjacent signals. - Higher speed operation may require use of fundamental-tone (third-overtone typically has more jitter) crystal-based oscillator for optimum performance. Evaluate and compare candidates by measuring TXCLK jitter. - All unused outputs must be terminated. To conserve power, unused PECL outputs can be terminated with a $1k\Omega$ resistor to V_{EE} . ## **Package Information** 28-Pin SOIC .300" Wide (Z28-1) #### Note: 1. The 28-pin SOIC package is NOT recommended for new designs. TOP VIEW BOTTOM VIEW SIDE VIEW DETAIL "A" #### NOTES: DIMENSIONS ARE IN MM(INCHES). CONTROLLING DIMENSION: MM. DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.254 (CO.10). 4. LEAD DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. 5. MAXIMUM AND MINIMUM SPECIFICATIONS ARE INDICATED AS FOLLOWS: MAX/MIN. THESE DIMENSIONS TO BE DETERMINED AT DATUM PLANE —H— PACKAGE TOP DIMENSIONS ARE SMALLER THAN BOTTOM DIMENSIONS AND TOP OF PACKAGE WILL NOT OVERHANG BOTTOM OF PACKAGE. EXPOSED PAD SHALL BE COPLANAR WITH PACKAGE BOTTOM WITHIN 0.05mm EXPOSED PAD: Cu WITH Sn/Pb PLATING DIMENSION INCLUDES LEAD FINISH. 32-Pin EPAD-TQFP (H32-1) (Die Up) PCB Thermal Consideration for 32-Pin EPAD-TQFP #### **Package Notes:** - 1. Package meets Leve 2 moisture sensitivity classification and is shipped in dry-pack form. - 2. Exposed pad must be soldered to a ground for proper thermal management. ### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2006 Micrel, Incorporated.