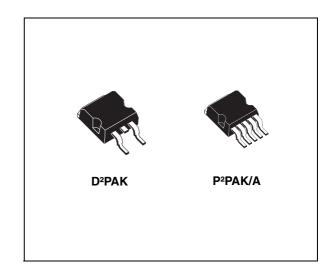


LD29300XX, LD29300XX18, LD29300XX33

3 A, very low drop voltage regulators


Datasheet - production data

Features

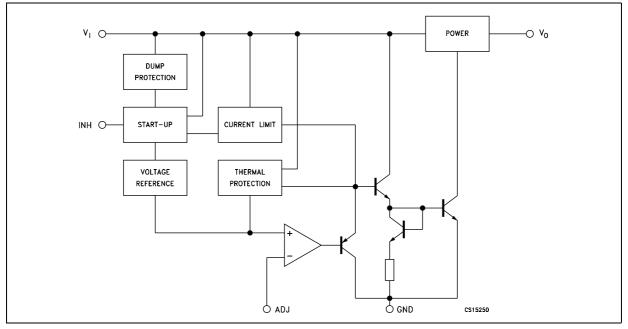
- Very low dropout voltage (typ. 0.4 at 3 A)
- Guaranteed output current up to 3 A
- Fixed voltage with ± 1% tolerance at 25 °C
- Internal current and thermal limit
- Logic controlled electronic shutdown available in P²PAK/A

Description

The LD29300xx is a high current, high accuracy, low-dropout voltage regulator series. These regulators feature 400 mV dropout voltage and very low ground current. Designed for high current loads, these devices are also used in lower current, extremely low dropout-critical systems, where their tiny dropout voltage and ground current values are important attributes. Typical applications are in power supply switching post regulation, series power supply for monitors, series power supply for VCRs and TVs, computer systems and battery powered systems.

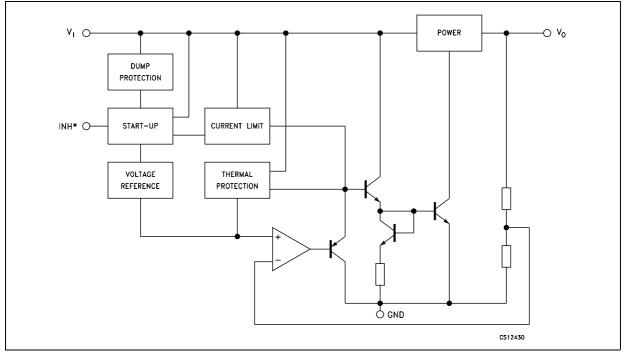
Table 1.Device summary

Order	Order codes			
D²PAK	P²PAK/A	Output voltages		
LD29300D2T18R		1.8 V		
	LD29300P2M33R	3.3 V		
	LD29300P2MTR	ADJ		


This is information on a product in full production.

Contents

1	Diagram
2	Pin configuration
3	Typical application
4	Maximum ratings 6
5	Electrical characteristics7
6	Typical characteristics
7	Package mechanical data 13
8	Revision history



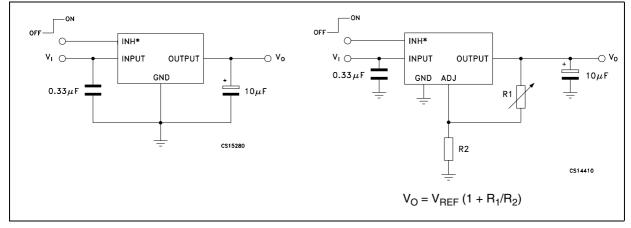
1 Diagram

Figure 1. Schematic diagram for adjustable version

Figure 2. Schematic diagram for fixed version

* Only for version with inhibit function.

2 Pin configuration



* Not connected for fixed version.

3 Typical application

* Only for version with inhibit function.

4 Maximum ratings

Table 2. Absolute	maximum ratings
-------------------	-----------------

Symbol	Parameter	Value	Unit
VI	DC input voltage	30 ⁽¹⁾	V
۱ ₀	Output current	Internally limited	mA
PD	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	- 55 to 150	°C
T _{OP}	Operating junction temperature range	- 40 to 125	°C

1. Above 14 V the device is automatically in shut-down.

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 5.	inernal data		
Symbol	Parameter	D ² PAK-P ² PAK/A	Unit
R _{thJA}	Thermal resistance junction-ambient	60	°C/W
R _{thJC}	Thermal resistance junction-case	3	°C/W

Table 3. Thermal data

5 Electrical characteristics

 I_O = 10 mA, T_J = 25 °C, V_I = 3.8 V, V_{INH} = 2 V $^{(a)},\,C_I$ = 330 nF, C_O = 10 $\mu\text{F},$ unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Output voltage	$I_0 = 10$ mA to 3A, $V_1 = 3$ to 7.3V	1.782	1.8	1.818	V
Vo	Output voltage	$T_{J} = -40$ to 125°C	1.764		1.836	v
ΔV_{O}	Load regulation	$I_{O} = 10$ mA to 3A		0.2	1.0	%
ΔV_{O}	Line regulation	V ₁ = 3 to 13V		0.06	0.5	%
SVR	Supply voltage rejection	$f = 120 \text{ Hz}, V_I = 3.8 \pm 1 \text{V}, I_O = 1.5 \text{A}^{(1)}$	62	72		dB
		$I_{O} = 500$ mA, $T_{J} = -40$ to $125^{\circ}C^{(2)}$		0.1		
V _{DROP}	Dropout voltage	$I_{\rm O}$ = 1.5A, $T_{\rm J}$ = -40 to 125°C ⁽³⁾		0.2		V
		$I_{O} = 3A, T_{J} = -40$ to $125^{\circ}C^{(3)}$		0.4	0.7	
		$I_{O} = 1.5A, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		20	50	mA
I _q	Quiescent current	$I_{O} = 3A, T_{J} = -40$ to $125^{\circ}C$		45	100	ШA
		V_{I} = 13V, V_{INH} = GND, T_{J} = -40 to 125°C		130	180	μA
I _{sc}	Short circuit current	V ₁ - V _O = 5.5V		4.5		А
V _{IL}	Control input logic low	OFF MODE ⁽¹⁾ , $T_J = -40$ to $125^{\circ}C$			0.8	V
V _{IH}	Control input logic high	ON MODE ⁽¹⁾ , $T_J = -40$ to $125^{\circ}C$	2			V
I _{INH}	Control input current	$T_{\rm J} = -40$ to 125°C, $V_{\rm INH} = 13V$		5	10	μA
eN	Output noise voltage	$B_{P} = 10Hz$ to 100kHz, $I_{O} = 100mA$		60		μV_{RMS}

Table 4.Electrical characteristics of LD29300#18

1. Guaranteed by design.

2. Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1 V$ applied to V_I .

a. Only for version with Inhibit function.

 I_O = 10 mA, T_J = 25 °C, V_I = 5.3 V, V_{INH} = 2 V $^{(b)},\,C_I$ = 330 nF, C_O = 10 $\mu\text{F},$ unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V		I _O = 10mA to 3A, V _I = 4.3 to 8.8V	3.267	3.3	3.333	V
Vo	Output voltage	$T_{\rm J} = -40$ to 125°C	3.234		3.366	v
ΔV _O	Load regulation	$I_{O} = 10$ mA to 3A		0.2	1.0	%
ΔV _O	Line regulation	V ₁ = 4.3 to 13V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V_I = 5.3±1V, I_O = 1.5A ⁽¹⁾	52	67		dB
		$I_{\rm O}$ = 500mA, $T_{\rm J}$ = -40 to 125°C ⁽²⁾		0.1		
V _{DROP}	Dropout voltage	$I_{O} = 1.5A, T_{J} = -40$ to $125^{\circ}C^{(3)}$		0.2		V
		$I_{O} = 3A, T_{J} = -40$ to 125°C ⁽³⁾		0.4	0.7	
		$I_{O} = 1.5A, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		20	50	mA
۱ _q	Quiescent current	$I_{O} = 3A, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		45	100	ШA
		$V_{I} = 13V, V_{INH} = GND, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		130	180	μA
I _{sc}	Short circuit current	V ₁ - V _O = 5.5V		4.5		А
V _{IL}	Control input logic low	OFF MODE ⁽¹⁾ , $T_J = -40$ to 125°C			0.8	V
V _{IH}	Control input logic high	ON MODE ⁽¹⁾ , $T_J = -40$ to $125^{\circ}C$	2			V
I _{INH}	Control input current	$T_{\rm J} = -40$ to 125°C, $V_{\rm INH} = 13V$		5	10	μA
eN	Output noise voltage	$B_P = 10Hz$ to 100kHz, $I_O = 100mA$		132		μV_{RMS}

Table 5.	Electrical	characteristics	of	LD29300#33
----------	------------	-----------------	----	------------

1. Guaranteed by design.

2. Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_0 + 1 V$ applied to V_1 .

b. Only for version with Inhibit function.

 I_O = 10 mA, T_J = 25 °C, V_I = 3.23 V, V_{INH} = 2 V $^{(c)},\,C_I$ = 330 nF, C_O = 10 μF adjust pin tied to output pin.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Minimum operating input voltage	I_{O} = 10mA to 3A, T_{J} = -40 to 125°C	2.5			V
ΔV_{O}	Load regulation	I _O = 10mA to 3A		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 2.5 V to 13V		0.06	0.5	%
V	Poforonoo voltogo	I _O = 10mA to 3A, V _L = 2.5 to 4.5V	-1%	1.23	+1%	v
V _{REF}	Reference voltage	$T_{\rm J} = -40$ to 125°C ⁽¹⁾			+2%	v
SVR	Supply voltage rejection	f = 120 Hz, V_I = 3.23 ±1V, I_O = 1.5A ⁽²⁾	65	75		dB
		$I_{O} = 1.5A, T_{J} = -40$ to $125^{\circ}C$		20	50	~ ^
۱ _q	Quiescent current	$I_{O} = 3A, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		45	100	mA
		$V_I = 13V$, $V_{INH} = GND$, $T_J = -40$ to $125^{\circ}C$		130	180	μA
I _{ADJ}	Adjust pin current	$T_{\rm J}$ = -40 to 125°C ⁽³⁾			1	μA
I _{sc}	Short circuit current	V ₁ - V _O = 5.5V		4.5		Α
V_{IL}	Control input logic low	OFF MODE $^{(1)}$,T _J = -40 to 125°C			0.8	V
V_{IH}	Control input logic high	ON MODE ⁽¹⁾ , $T_J = -40$ to $125^{\circ}C$	2			V
I _{INH}	Control input current	$T_{\rm J}$ = -40 to 125°C, $V_{\rm INH}$ = 13V		5	10	μA
eN	Output noise voltage	$B_{P} = 10Hz$ to 100kHz, $I_{O} = 100mA$		50		μV _{RMS}

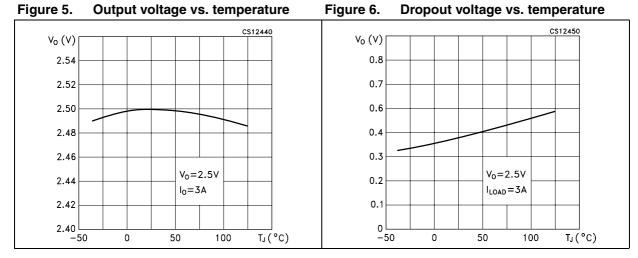
Table 6. Electrical characteristics of LD2930	0#ADJ
---	-------

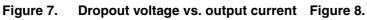
1. Reference voltage is measured between output and GND pin, with ADJ PIN tied to V_{OUT} .

2. Guaranteed by design.

c. Only for version with Inhibit function.

 $V_{d}(V)$

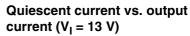

0.4

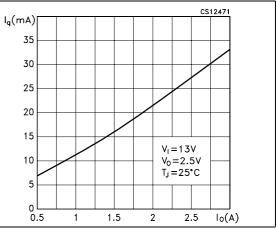

0.3

0.2

0.1

Typical characteristics 6





 $V_0 = 2.5V$

T_ = 25°C

CS12460

0 0 0.5 1 1.5 2 2.5 Io(A) Figure 9. Quiescent current vs. output

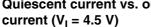
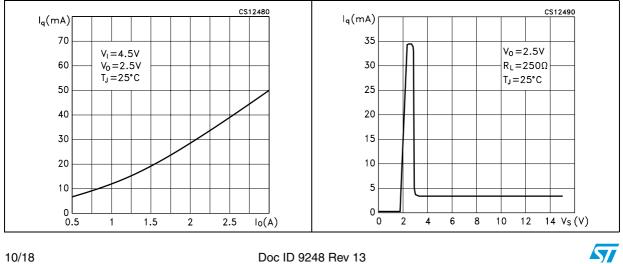
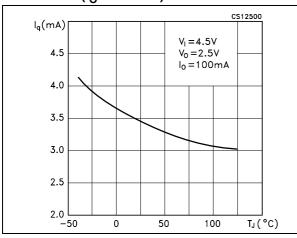
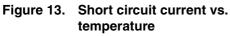
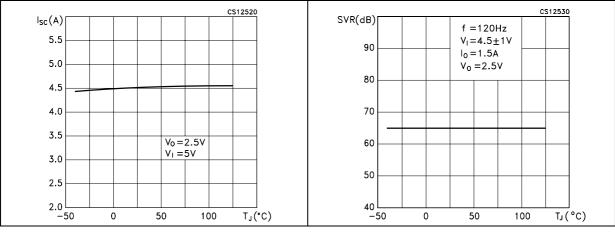



Figure 10. Quiescent current vs. supply voltage


CS12510


 $V_{I} = 4.5V$


 $V_0 = 2.5V$

 $I_0 = 3A$

Figure 11. Quiescent current vs. temperature Figure 12. Quiescent current vs. temperature $(I_0 = 100 \text{ mA})$ $(I_0 = 3 \text{ A})$

 $l_q(mA)$

90

80

70

60 50

40

30 20

10

0

-50

0

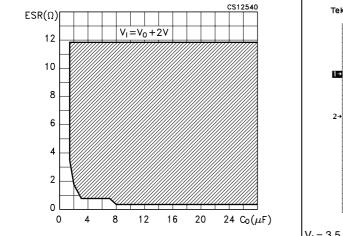
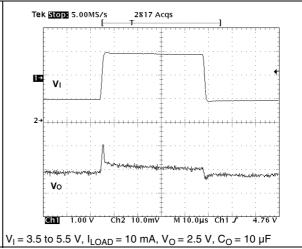
temperature

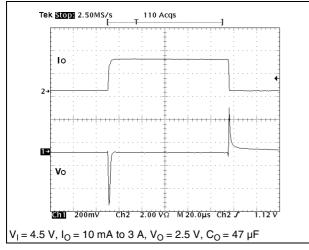
Figure 14. Supply voltage rejection vs.

50

100

T」(°C)

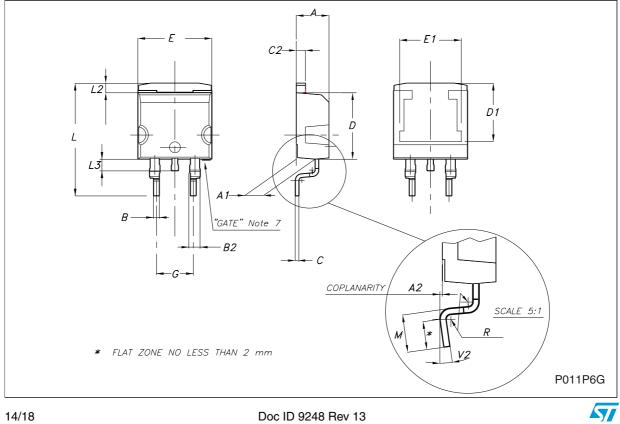




Figure 16. Line transient

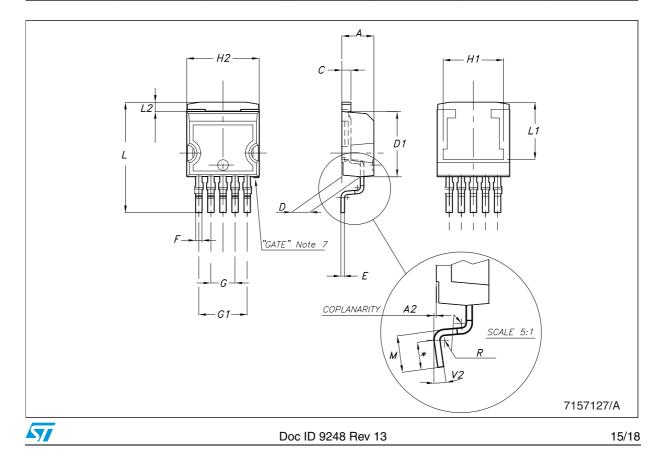
57

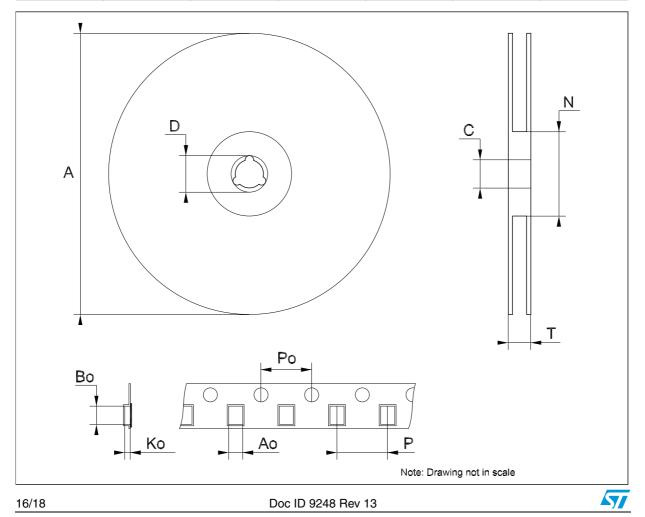
Doc ID 9248 Rev 13

Figure 17. Load transient


7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.


Dim.		mm.			inch.			
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	4.4		4.6	0.173		0.181		
A1	2.49		2.69	0.098		0.106		
A2	0.03		0.23	0.001		0.009		
В	0.7		0.93	0.027		0.036		
B2	1.14		1.7	0.044		0.067		
С	0.45		0.6	0.017		0.023		
C2	1.23		1.36	0.048		0.053		
D	8.95		9.35	0.352		0.368		
D1		8			0.315			
E	10		10.4	0.393		0.409		
E1		8.5			0.335			
G	4.88		5.28	0.192		0.208		
L	15		15.85	0.590		0.624		
L2	1.27		1.4	0.050		0.055		
L3	1.4		1.75	0.055		0.068		
М	2.4		3.2	0.094		0.126		
R		0.4			0.016			


Dim.		mm.			inch.	
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.30		4.80	0.169		0.188
A2	0.03		0.23	0.001		0.009
С	1.17		1.37	0.046		0.053
D	2.40		2.80	0.094		0.110
D1	8.95		9.35	0.352		0.368
Е	0.45		0.60	0.017		0.023
F	0.80		1.05	0.031		0.041
G	3.20		3.60	0.126		0.142
G1	6.60		7.00	0.260		0.275
H1		8.5			0.334	0.409
H2	10.00		10.40	0.393		0.409
L	15		15.85	0.590		0.624
L1		8			0.315	
L2	1.27		1.40	0.050		0.055
М	2.4		3.2	0.094		0.126
R		0.40			0.016	

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Tape & reel D²PAK-P²PAK-D²PAK/A-P²PAK/A mechanical data

8 Revision history

Table 7.	Document revision history	
----------	---------------------------	--

Date	Revision	Changes	
21-Oct-2005	7	Order codes updated.	
10-Apr-2007	8	Order codes updated.	
11-May-2007	9	Order codes updated.	
08-Jun-2007	10	Order codes updated.	
03-Apr-2008	11	Modified: Table 1 on page 1.	
11-Jul-2008	12	Modified: Table 1 on page 1.	
13-Sep-2012	13	Updated: Table 1 on page 1.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 9248 Rev 13

