

Date: - 26 July, 2005

Data Sheet Issue:

Provisional Data

Asymmetric Thyristor

Types A1237NC200 to A1239

Development Type No.: AX146NC280

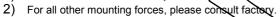
Absolute Maximum Ratings

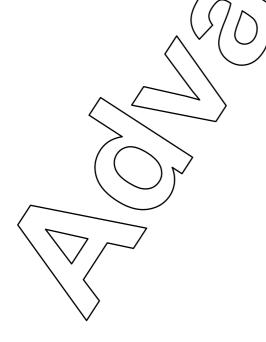
	VOLTAGE RATINGS		MAXIMUM LIMITS	UNITS
V_{DRM}	Repetitive peak off-state voltage, (note 1)		2800	V
V_{DSM}	Non-repetitive peak off-state voltage, (note 1)	_	2800	V
V_{RRM}	Repetitive peak reverse voltage, (note 1)	\bigcap	30	V
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)	$(//\langle)$	30	V

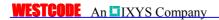
	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{T(AV)M}	Maximum average on-state current, T _{sink} =55°C, (note 2)	1237	Α
$I_{T(AV)M}$	Maximum average on-state current. T _{sink} =85°C, (note 2)	785	Α
$I_{T(AV)M}$	Maximum average on-state current. T _{sink} =85°C, (note 3)	430	Α
I _{T(RMS)M}	Nominal RMS on-state current, sik=25°C, (note 2)	2555	Α
I _{T(d.c.)}	D.C. on-state current, T _{sink} =25°C, (note 4)	1962	Α
I _{TSM2}	Peak non-repetitive surge tp=10ms, √m≤10V, (note 5)	18	kA
l ² t	I ² t capacity for fusing t₀=10ms, V _{rm} ≤10V, (note 5)	1.62×10 ⁶	A ² s
(4.4.10)	Critical rate of rise of on-state current (non-repetitive), (Note 6)	2000	A/µs
(di/dt) _{cr}	Critical rate of rise of on-state current (repetitive), (Note 6)	1000	A/µs
V_{RGM}	Peak reverse gate voltage	10	V
P _{G(AV)}	Mean forward gate power	10	W
P _{GM}	Peak forward gate power	30	W
T _{j op}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

- De-rating factor of 0.13% per °C is applicable for T_i below 25°C.
- Double side cooled, single phase; 50Hz, 180° half-sinewave.
- Single side cooled, single phase; 50Hz, 180° half-sinewave. Double side cooled.

- Half-sinewave, 125°C T_i initial.
- V_D=67%/V_{DRM}, I_{FG}=2A, t_r≤0.5μs, T_{case}=125°C.




Characteristics


	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
	Marian and a salah	-	-	2.1	I _{TM} =2000A	V
Vтм	Maximum peak on-state voltage	-	-	2.7	I _{TM} =4500A	V
V _{T0}	Threshold voltage	-	-	1.707		V
r _T	Slope resistance	-	-	0.212		mΩ
(dv/dt) _{cr}	Critical rate of rise of off-state voltage	3000	-	-	V _D =80% V _{DRM} , timear ramp, gate o/c	V/μs
I _{DRM}	Peak off-state current	-	-	60	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	60	Rated Vorm ()	mA
V _{GT}	Gate trigger voltage	-	-	3.0	2050	V
I _{GT}	Gate trigger current	-	-	400 2	f_{j} =25°C V_{D} =10V, I_{T} =3A	mA
V_{GD}	Gate non-trigger voltage	-	-	0.25	Rated V _{DRM}	V
lн	Holding current	-	-	1000	T ₁ =25°C	mA
t _{gd}	Gate-controlled turn-on delay time	-	0.9	2.0	V _D =90% V _{ORM} , I _T =6000A, di/dt=1500A/µs,	μs
t gt	Turn-on time	-	1.5	3.0	I _{FG} =2A, t _r =0.5μs, T _j =25°C	μs
	- m	-	25/		I _{TM} =1000A, t _p =2000μs, di/dt=60A/μs, Λ γ=10V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=20V/μs	
t _q	Turn-off time	-	30	7/3	I _T _M =1000A, t _p =2000μs, di/dt=60A/μs, V _f =10V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=200V/μs	μs
<u> </u>	The same of the sa	- ,	7	0.024	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	- /	\\ \\ \	Q .048	Single side cooled	K/W
F	Mounting force	19	(-)	26	(See note 2)	kN
W_t	Weight	\	510	/ -		g

Notes:-

1) Unless otherwise indicated T_j=125°C.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

			-
Voltage Grade	$V_{DRM}V_{DSM}$	V_{RRM}	PC V
20	2000	30	1250 /
22	2200	30	1350
24	2400	30	1450
26	2600	30	1550
28	2800	30	/1650
			-

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

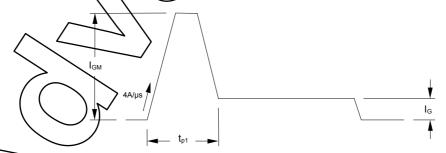
3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for 7/below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Snubber Components


When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber registor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

6.0 Rate of rise of on-state current

The maximum un-primed rate of rise of on-state current must not exceed 2000A/µs at any time during turn-on on a non-repetitive basis. For repetitive performance, the on-state rate of rise of current must not exceed 1000A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the total device current including that from any local snubber network.

7.0 Gate Drive

The nominal requirement for a typical gate drive is illustrated below. An open circuit voltage of at least 30V is assumed. This gate drive must be applied when using the full di/dt capability of the device.

The magnitude of I_{CM} should be between five and ten times I_{GT} , which is shown on page 3. Its duration (t_P) should be 20µs or sufficient to allow the anode current to reach ten times I_{L} , whichever is greater. Otherwise, an increase in pulse current could be needed to supply the necessary charge to trigger. The 'back porch' current I_{G} should remain flowing for the same duration as the anode current and have a magnitude in the order of 1.5 times I_{GT} .

8.0 Computer Modelling Parameters

8.1 Device Dissipation Calculations

$$I_{_{AV}} = \frac{-V_{_{T0}} + \sqrt{{V_{_{T0}}}^2 + 4 \cdot ff^2 \cdot r_{_{T}} \cdot W_{_{AV}}}}{2 \cdot ff^2 \cdot r_{_{T}}}$$

and:

Where V_{T0} =1.707, r_{T} =0.212 $m\Omega$,

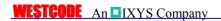
 R_{th} = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

	$W - \frac{\Delta T}{C}$
	$W_{AV} = \frac{1}{R_{th}}$ $\Delta T = T_{j \max} - T_{K}$
I	

Supplementary Thermal Impedance							
Conduction Angle	30°	60°	%°	120°	\180°	270°	d.c.
Square wave Double Side Cooled	0.0293	0.0285	0.0278	0.0271	0.0261	0.0249	0.024
Square wave Single Side Cooled	0.0534	0.053	0.0524	0.0548	0.0509	0.0497	0.0489
Sine wave Double Side Cooled	0.0286	0.0276	0.0269	0.0263	0.0248		
Sine wave Single Side Cooled	0.0531	0.0523	0.0517	0.0511	0.0497		

Form Factors							
Conduction Angle	30°	60°	\ 90%	/120°	180°	270°	d.c.
Square wave	3.46	2.45	$\frac{1}{2}$	1.73	1.41	1.15	1
Sine wave	3.98	4 .7 %	2.22	1.88	1.57		


8.2 Calculating V_T using ABCD Coefficients

- The on-state characteristic I_T vs. V_T , or page 6 is represented in two ways; (i) the well established V_{T0} and r_T tangent used for rating purposes and (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

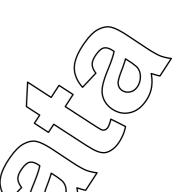
The constants, derived by curve litting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

 	7/		
	25°C Coefficients		125°C Coefficients
A	0.415411291	Α	1.553894527
в) 1	0.529844	В	0.1270671
~ /	4.9×10 ⁻⁴	С	4.73466 ×10 ⁻⁴
Б	-0.065645	D	-0.03055924
7			

8.3 D.C. Thermal Impedance Calculation

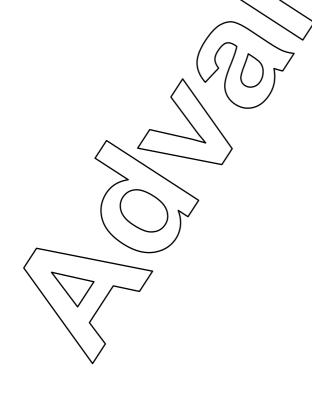
$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$

Where p = 1 to n, n is the number of terms in the series and:

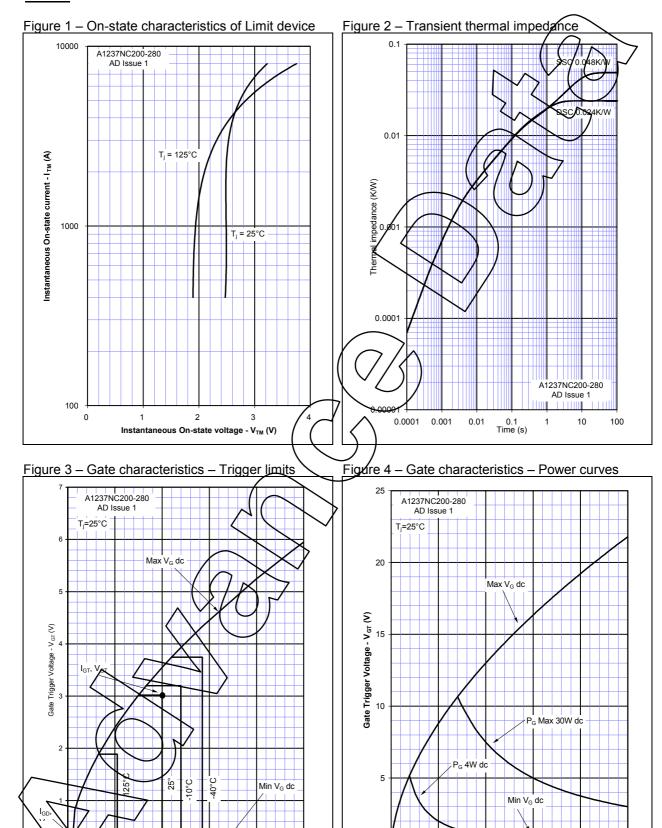

t = Duration of heating pulse in seconds.

r_t = Thermal resistance at time t.

 r_p = Amplitude of p_{th} term.


 τ_p = Time Constant of r_{th} term.

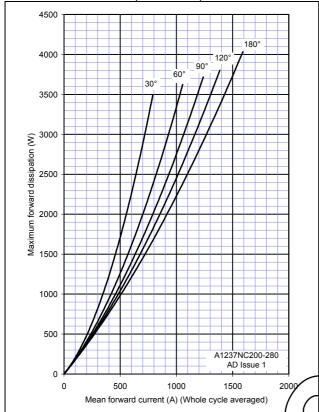
The coefficients for this device are shown in the tables below:



		D.C. Dou	ble Side Cooled			
Term	1	2	3	A	/	5
r_p	0.01249139	6.316833×10 ⁻³	1.850855×10 ⁻³	1.922046×	×10 ⁻³	6.135330×10 ⁻⁴
$ au_{ ho}$	0.8840810	0.1215195	0.03400152	6.742908×	10 ⁻³	1.326292×10 ⁻³

	D.C. Single Side Cooled							
Term 1 2 3 7 6								
	r_{ρ}	0.02919832	4.863568×10 ⁻³	3.74479 8× 10 ³ 6.818034	×10 ⁻³ 2.183558×10 ⁻³	1.848294×10 ⁻³		
	$ au_{ ho}$	6.298105	3.286174	0,6359179 0.11868	0.02404574	3.379476×10 ⁻³		

Curves


0.6

Gate Trigger Current - I_{GT} (A)

0 1

Gate Trigger Current - I_{GT} (A)

Figure 5 – On-state current vs. Power dissipation – Double Side Cooled (Sine wave)

temperature – Double Side Cooled (Sine wave)

Figure 6 - On-state current vs. Heatsink

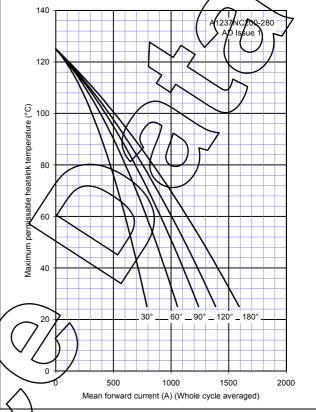
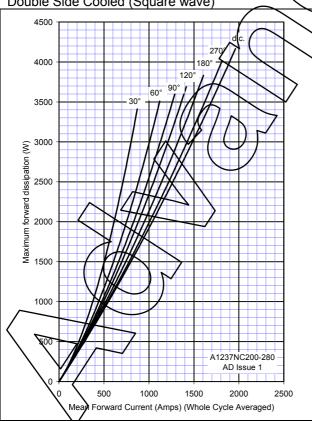



Figure 7 – On-state current vs. Power dissipation Double Side Cooled (Square wave)

∮igure 8 – On-state current vs. Heatsink temperature – Double Side Cooled (Square wave)

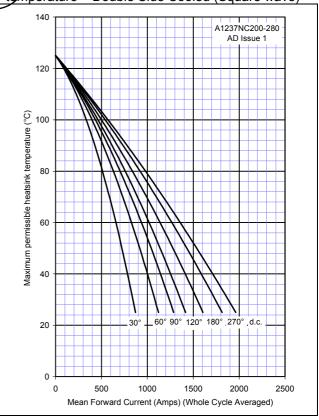


Figure 9 – On-state current vs. Power dissipation – Single Side Cooled (Sine wave)

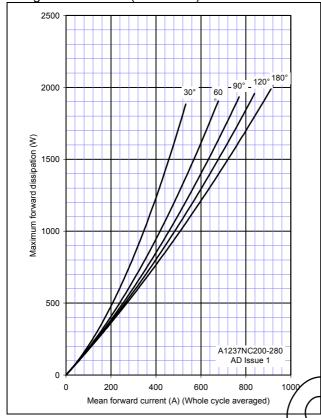


Figure 11 – On-state current vs. Power dissipation – Single Side Cooled (Square wave)

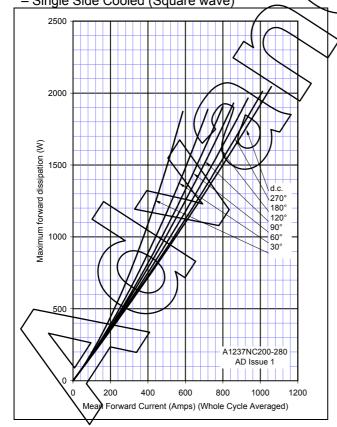
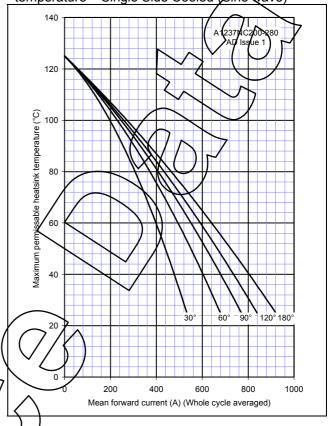
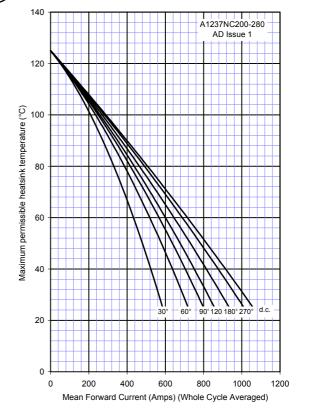
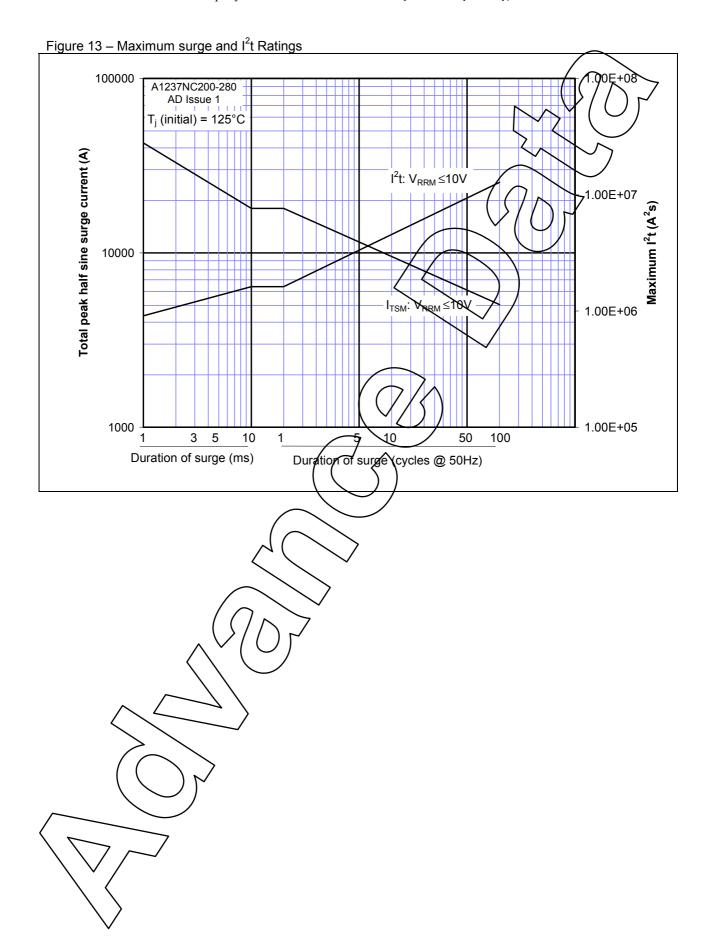
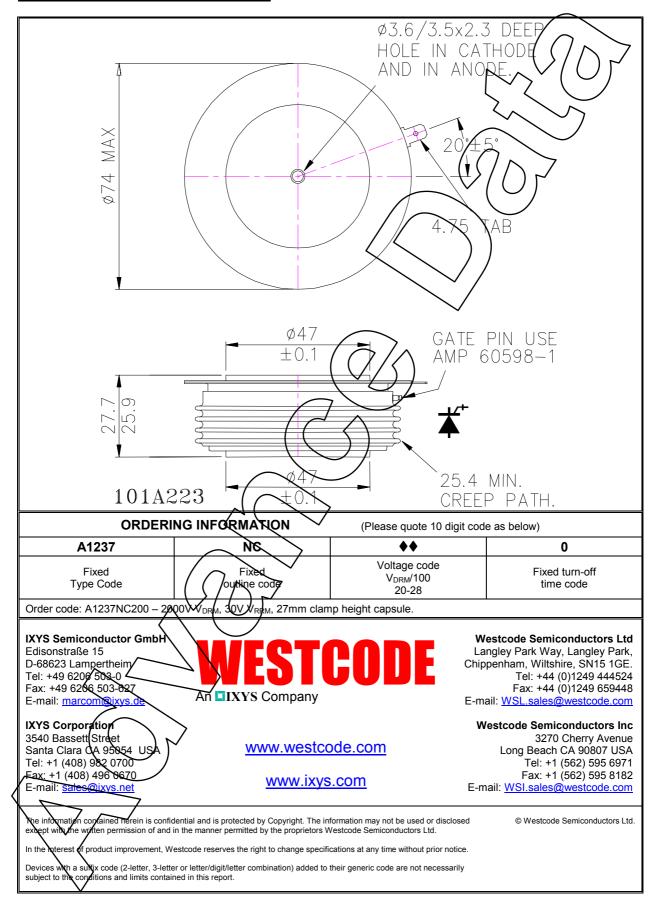


Figure 10 – On-state current vs. Heatsink temperature – Single Side Cooled (Sine-wave)


Figure 12 – On-state current vs. Heatsink temperature – Single Side Cooled (Square wave)

Outline Drawing & Ordering Information

