XYS

Common Cathode

DSA 20 C 150PN

Features / Advantages:

High Performance Schottky Diode

(Marking on product)

Low Loss and Soft Recovery

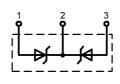
Schottky

Part number

DSA 20 C 150PN

advanced

150 V $V_{RRM} =$ I_{FAV} = 2x 10 A V_{F} 0.74 V =


0

Package:

TO-220FPAB

- Industry standard outline
- · Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant
- Unit Symb V_{RRM} V I_R mΑ mΑ VF V V V V A $\mathsf{I}_{\mathsf{FAV}}$ V V_{F0} r_F mΩ $\mathsf{R}_{\mathsf{thJC}}$ K/W °C T_{v_J} W P_{tot} А IFSM pF C_{J} EAS mJ repetitive avalanche current $V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz tbd А I_{AR}

IXYS reserves the right to change limits, conditions and dimensi Data according to IEC 60747and per diode unless otherwise specified

Applications:

- · Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

				R	ating	s	
bol	Definition	Conditions		min.	typ.	max.	
	max. repetitive reverse voltage	T _{vJ} = 25 °C				150	
	reverse current	V _R = 150 V	T _{vJ} = 25 °C			0.3	
		V _R = 150 V	T _{vJ} = 125 °C			3	
	forward voltage	I _F = 10 A	T _{vJ} = 25 °C			0.88	
		I _F = 20 A				0.99	
		I _F = 10 A	T _{v.} = 125 °C			0.74	
		I _F = 20 A	1 _{VJ} = 125 C			0.86	
	average forward current	rectangular, d = 0.5	T _c = 140 °C			10	
	threshold voltage	T _{vJ} = 175 °C			0.55		
	slope resistance $\int for power loss c$				11.5		
	thermal resistance junction to case					4.50	
	virtual junction temperature			-55		175	ļ
	total power dissipation		T _c = 25 °C			35	
	max. forward surge current	t_{p} = 10 ms (50 Hz), sine	T _{vJ} = 45 °C			60	
	junction capacitance	$V_R = V; f = 1 MHz$	$T_{VJ} = 25 ^{\circ}C$				
	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	T _{VJ} = 25 °C			tbd	

· High reliability circuit operation

Extremely low switching losses

• Low voltage peaks for reduced

Improved thermal behaviour

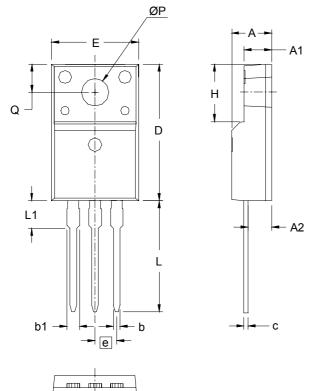
- protection circuits
- Low noise switching
- Low losses

Very low Vf

Low Irm-values

LIXYS

DSA 20 C 150PN


advanced

				Ratings				
Symbol	Definition	Conditions	min.	typ.	max.	Unit		
I _{RMS}	RMS current	per pin*			35	А		
R _{thCH}	thermal resistance case to	heatsink		0.50		K/W		
M _D	mounting torque		0.4		0.6	Nm		
F _c	mounting force with clip		20		60	Ν		
T _{stg}	storage temperature		-55		150	°C		
Weight				2		g		

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAB

SYM	INCHES		MILLIMETERS		
STM	MIN	MAX	MIN	MAX	
A	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
E	.392	.408	9.96	10.36	
е	.100 BSC		2.54 BSC		
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13.28	
L1	.119	.135	3.03	3.43	
ØP	.121	.129	3.08	3.28	
Q	.126	.134	3.20	3.40	

IXYS reserves the right to change limits, conditions and dimensi Data according to IEC 60747 and per diode unless otherwise specified