

High Voltage Rectifiers

 $V_{\text{RRM}} = 8000 V$ $I_{\text{F(AV)M}} = 4.2 A$

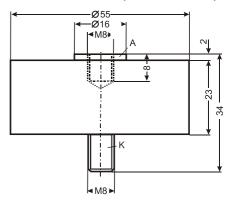
V _{RRM}	Standard	Power Designation
v	Types	
8000	UGE 1112 AY4	Si-E 3000 / 1300-2.5

Symbol	Conditions		Rating	s
I _{F(RMS)}			7	A
F(AV)M	air self cooling,	$T_{amb} = 45^{\circ}C$		
		 without cooling plate 	2.0	A
		 with colling plate 	2.5	A
	forced air cooling	g:		
	v = 3 m/s,	$T_{amb} = 35^{\circ}C$		
	,	- without cooling plate	3.2	А
		- with cooling plate	4.1	Α
	oil cooling,	$T_{amb} = 35^{\circ}C$		
		- without cooling plate	4.2	А
		- with cooling plate	4.2	А
P _{RSM}	T _(vj) = 150°C;	t _p = 10 μs	2.5	kW
I _{FSM}	non repetitive, 50 c/s (for 60 c/s add 10%)			
	$T_{(vj)} = 45^{\circ}C;$		120	A
	T _(vj) = 150°C;	t _p = 10 ms	100	A
T _{amb}			-40+150	°C
T _{stg}			-40+150	°C
T _(vj)			150	°C
Weight			122	g

Symbol	Conditions		Characteristic	Values
I _R	$T_{(vj)} = 150^{\circ}C;$	$V_{\rm R} = V_{\rm RRM}$	≤ 1	mA
V _F	$I_F = 7 A$ $T_{(vj)} = 25^{\circ}C$		6.25	V
V _{to} r _t	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		4.25 0.215	V mΩ
а	f = 50Hz		5 x 9,81	m/s²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics


Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- · Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- · Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

© 2003 IXYS All rights reserved

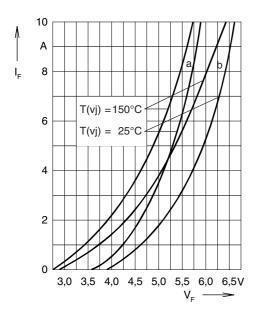


Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop V_F for junction temperature T_(vj) = 25°C and T_(vj) = 150°C a = Mean value characteristic b = Limit value characteristic

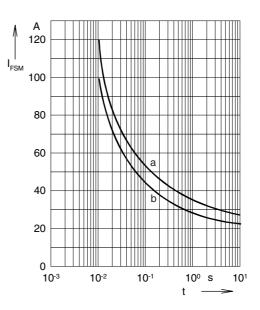
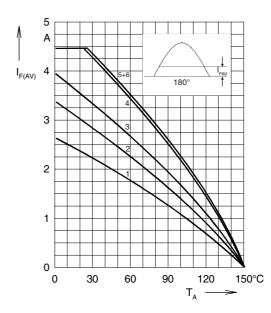



Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current I_{FSM} as a function of time *t* and serve for rating protective devices.

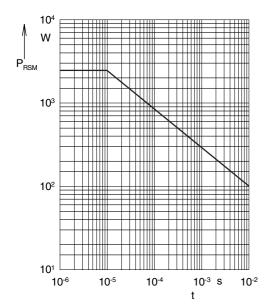

 $\begin{array}{ll} a = \mbox{Initial state} & T_{(vj)} = \ 45^{\circ}\mbox{C} \\ b = \mbox{Initial state} & T_{(vj)} = \ 150^{\circ}\mbox{C} \\ \end{array}$

Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes			
1 = air self cooling	without	cooling plate	
2 = air self cooling	with	cooling plate	
3 = forced air cooling	without	cooling plate	
4 = forced air cooling	with	cooling plate	
5 = oil cooling	without	cooling plate	
6 = oil cooling	with	cooling plate	

Fig. 3: Power loss

Non repetitive peak reverse power loss P_{RSM} as a function of time *t*, $T_{(vj)} = 150^{\circ}C$