

Applications

- IEEE802.11b DSSS WLAN
- IEEE802.11g OFDM WLAN
- Access Points, PCMCIA, PC cards

Features

- Dual Mode IEEE802.11b & IEEE802.11g
- All RF ports matched to 50 Ω
- Integrated PA, TX Filter, DPDT T/R and Diversity switches
- Integrated Power Detector
- 20 dBm @ 3.0 % EVM, 802.11g, 54 Mbits
- 20 dBm, 802.11b, ACPR = -37 dBr, 11 Mbits
- Single supply voltage: 3.3 V ± 10 %
- Small lead free package, 8 mm x 7 mm x 1.2 mm, MSL 3

Ordering Information

Part Number	Package	Remark		
SE2521A80	24 pin LGA	Samples		
SE2521A80-R	24 pin LGA	Tape and Reel		
SE2521A80-EK1	N/A	Evaluation kit		

Product Description

The SE2521A80 is a complete 802.11 b/g WLAN RF front-end module providing all the functionality of the power amplifier, power detector, T/R switch, diversity switch and associated matching. The SE2521A80 provides a complete 2.4 GHz WLAN RF solution from the output of the transceiver to the antennas in an ultra compact form factor.

Designed for ease of use, all RF ports are matched to 50 Ω to simplify PCB layout and the interface to the transceiver RFIC. The SE2521A80 also includes a transmitter power detector with 20 dB of dynamic range and a digital enable control for transmitter power ramp on/off control. The power ramp rise/fall time is 1 µsec typical.

The SE2521A80 is pin for pin compatible to Skyworks' SE2521A34 for easy transition of medium power designs to higher power designs.

The device also provides a notch filter from 3.2-3.3 GHz prior to the input of the power amplifier.

Functional Block Diagram

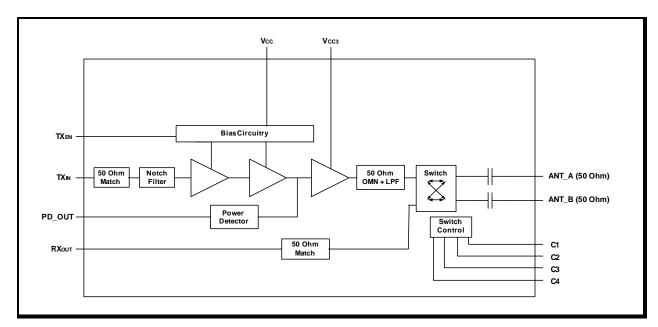


Figure 1: Functional Block Diagram

Pin Out Diagram

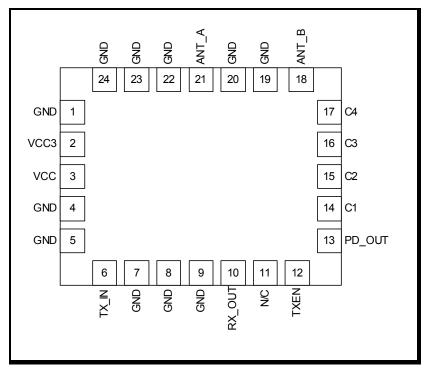


Figure 2: SE2521A80 Pin-Out (Top View Through Package)

Pin Out Description

Pin No.	Name	Description
1	GND	Ground
2	VCC3	+3.3 V DC for 3 rd stage power amplifier collector voltage
3	VCC	+3.3 V DC
4,5	GND	Ground
6	TX_IN	Transmit Input
7,8,9	GND	Ground
10	RX_OUT	Receive Output
11	N/C	No Connect
12	TXEN	Transmit Enable
13	PD_OUT	Power Detector
14	C1	Control 1 Input
15	C2	Control 2 Input
16	C3	Control 3 Input
17	C4	Control 4 Input
18	ANT_B	Antenna B (50 ohm)
19,20	GND	Ground

Pin No.	Name	Description
21	ANT_A	Antenna A (50 ohm)
22,23,24	GND	Ground

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition	Min.	Max.	Unit
Vcc	Supply Voltage on Vcc	-0.3	4.0	V
TXEN	Power Amplifier Enable	-0.3	4.0	V
TXRF	RF Input Power	-	2.0	dBm
TA	Operating Temperature Range	-20	85	°C
Тѕтс	Storage Temperature Range	-40	150	°C

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
TA	Ambient Temperature	0	25	85	°C

DC Electrical Characteristics

Conditions: Vcc = Ven = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions' SE2521A80-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Icc-g	Total Supply Current	P _{OUT} = 20 dBm, 54 Mbps OFDM signal, 64 QAM	-	275	-	mA
Ісс-в	Total Supply Current	P _{OUT} = 20 dBm, 11 Mbps CCK signal, BT = 0.45	-	300	-	mA
Icc_off	Total Supply Current	V _{EN} = 0 V, No RF Applied, C1 = C2 = C3 = C4 = 0 V	1	2	10	μΑ

Logic Characteristics

Conditions: Vcc = Ven = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions' SE2521A80-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VENH	Logic High Voltage (Module On)	-	2.0	ı	Vcc	V
VENL	Logic Low Voltage (Module Off)	-	0	-	0.5	V
lenh	Input Current Logic High Voltage	-	-	100	200	μΑ
lenl	Input Current Logic Low Voltage	-	-	0.2	-	μΑ

Switch Characteristics

Conditions: Vcc = Ven = 3.3 V, Ta = 25 °C, as measured on Skyworks Solutions' SE2521A80-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vctl_on	Control Voltage (On State)	-	3.0	-	3.6	V
VCTL_OFF	Control Voltage (OFF State)	-	0.0	-	0.2	V
SWon	Low Loss Switch Control Voltage	High State = Vctl_on - Vctl_off	2.8	-	Vcc	V
SWoff	High Loss Switch Control Voltage	Low State = Vctl_off - Vctl_off	0	-	0.3	V
ICTL_ON	Switch Control Bias Current (RF Applied)	On pin (C1,C2,C3,C4) being driven high. RF Applied	-	-	100	μΑ
ICTL_ON	Switch Control Bias Current (No RF)	On pin (C1,C2,C3,C4) being driven high. No RF	ı	1	30	μΑ
Ссть	Control Input Capacitance	-	-	-	100	pF

Switch Control Logic Table

Switch Logic					Operation	onal Mode	
C1	C4	C2	С3	TXRF – ANTA	TXRF – ANTB	RXRF – ANTA	RXRF – ANTB
SWon	SWoff	SWoff	SWoff	ON	OFF	OFF	OFF
SWoff	SWon	SWoff	SWoff	OFF	ON	OFF	OFF
SWoff	SWoff	SWon	SWoff	OFF	OFF	ON	OFF

	Switch Logic Operational Mode						
C1	C4	C2	C3	TXRF - ANTA	TXRF – ANTB	RXRF – ANTA	RXRF – ANTB
SWoff	SWoff	SWoff	SWon	OFF	OFF	OFF	ON

AC Electrical Characteristics

802.11g Transmit Characteristics

Conditions: $V_{CC} = V_{EN} = 3.3 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, as measured on Skyworks Solutions' SE2521A80-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
Fin	Frequency Range	-	2400	-	2500	MHz	
P802.11g	Output power	54 Mbps OFDM signal, 64QAM, EVM = 3.0 %	-	20	-	dBm	
P802.11b	Output power	11 Mbps CCK signal, BT = 0.45 ACPR(Adj) < -35 dBr ACPR(Alt) < -55 dBr	-	20	1	dBm	
P _{1dB}	P1dB	-	-	26	-	dBm	
S ₂₁	Small Signal Gain	-	27.0	30	34.0	dB	
ΔS21	Small Signal Gain Variation Over Band	-	-	1.0	2.5	dB	
S ₂₁ 3.2	Gain @ 3.2 to 3.3 GHz	-	-	3	7	dB	
2f,3f	Harmonics	Pout = 20 dBm, 2 Mbps, 802.11b CCK	-	-47	-42	dBm/MHz	
IM3	3 rd Order Inter- modulation	f1 and f2 at Fc +/- 312.5 kHz, P = 20 dBm	-	-35	-	dBc	
IM5	5 th Order Inter- modulation	f1 and f2 at Fc +/- 312.5 kHz, P = 20 dBm	-	-50	-	dBc	
tr	Rise Time	10 % to 90% of final output power level	-	0.20	-	μs	
tdr, tdf	Delay and rise/fall Time	50 % of V _{EN} edge and 90/10 % of final output power level	-	1.0	-	μѕ	
S ₁₁	Input Return Loss	-	6.5	9.5	-	dB	
STAB	Stability	P _{IN} ≤ -2 dBm Load VSWR = 6:1	All non-harmonically related outputs less than -50 dBc/MHz				

Receive Characteristics

Conditions: Vcc = Ven = 3.3 V, Ta = 25 °C, as measured on Skyworks Solutions' SE2521A80-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fоuт	Frequency Range	-	2400	-	2500	MHz
RX⊩	Insertion Loss	-	-	0.8	1.2	dB
RX _{RL}	Return Loss	-	-	-15	-10	dB
Delta Rx	Delta between Rx paths	ANT_A to RX_OUT or ANT_B to RX_OUT	-	-	0.5	dB
TRISOL-2	Rx Leakage	C1 or C4 = SWON, C2 = C3 = SWOFF, Device transmitting 20 dBm @ ANTA or ANTB, Power measured @ RX_OUT	-	-	6	dBm
ANTR _{ISOL}	Isolation between ANT_A and ANT_B to RX_OUT	Small signal input into ANT_A or ANT_B, Device not transmitting, Power measured @ RX_OUT, C1 AND C4 = SWON, C2 and C3 = SWOFF	14	-	24	dB

Power Detector Characteristics

Conditions: Vcc = Ven = 3.3 V, Ta = 25 °C, as measured on Skyworks Solutions' SE2521A80-EV1 evaluation board (de-embedded to device), unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	2400	-	2500	MHz
PDR	Power detect range, peak power	Measured at ANT_A or ANT_B	0	-	20	dBm
PDZLOAD	DC load impedance	-	-	2.6	-	kohm
PDV _{NoRF}	Output Voltage, Pout = No RF	-	0.90	0.96	1.04	٧
PDV _{p20}	Output Voltage, Pout = 20 dBm	-	-	0.50	-	٧
PDV _{p22}	Output Voltage, Pout = 22 dBm	-	-	0.37	-	V

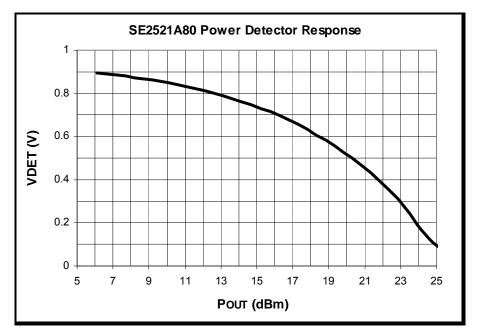


Figure 3: SE2521A80 Power Detector Performance Curve

Typical Performance Data

Conditions: $V_{CC} = V_{EN} = 3.3 \text{ V}$, Channel = 7, $T_A = 25 \,^{\circ}\text{C}$, as measured on Skyworks Solutions' SE2521A80-EV1 evaluation board , all unused ports terminated with 50 ohms, unless otherwise noted.

802.11g Typical Performance

Conditions: 54Mbps 802.11g OFDM Signal

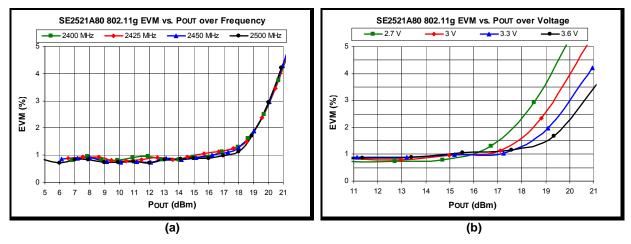


Figure 4: SE2521A80 802.11g 54 Mbps EVM vs. Pouτ (a) Over Frequency (b) Over Voltage

802.11b Performance

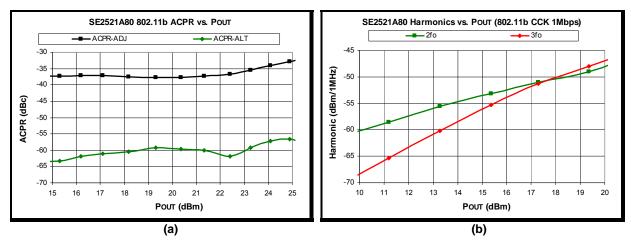


Figure 5: SE2521A80 802.11b Performance (a) ACPR vs. Pout, (b) Harmonics vs. Pout

CW Typical Performance

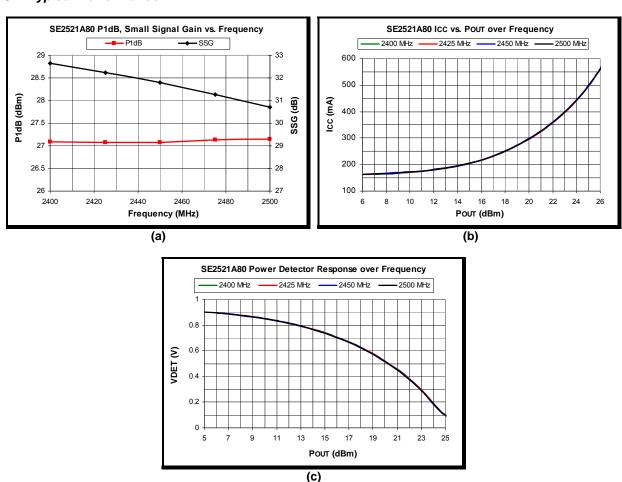


Figure 6: SE2521A80 CW Typical Performance (a) P1dB, Gain vs. Frequency, (b) Icc vs. Pouτ over Frequency and (c) Power Detector Response over Frequency

Package Information

Figure 7 shows the detailed device package diagram. The pads on the Skyworks RF modules are plated with gold over nickel, with a gold thickness of nominally 0.75 um. The modules can be reflowed onto FR4 based material using eutectic SnPb or common tin based Pb free solder pastes.

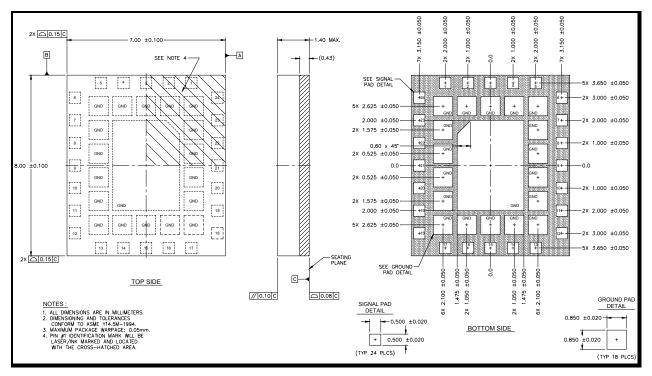


Figure 7: SE2521A80 Package Diagram

Package Handling Information

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE2521A80 is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended, please refer to:

- "Land Grid Array Module Solder Reflow & Rework Information", Document Number QAD-00046
- "Handling, Packing, Shipping and Use of Moisture Sensitive LGA", Document Number QAD-00047

Recommended PCB Footprint

Figure 8 shows the recommended PCB footprint for the SE2521A80.

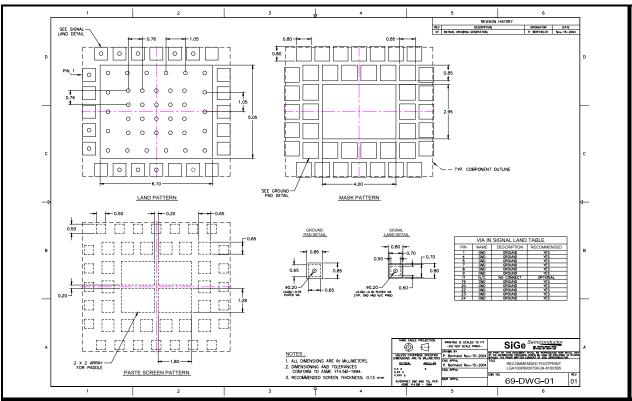


Figure 8: SE2521A80 Recommended PCB Footprint

Branding Information

The device branding is shown in Figure 9.

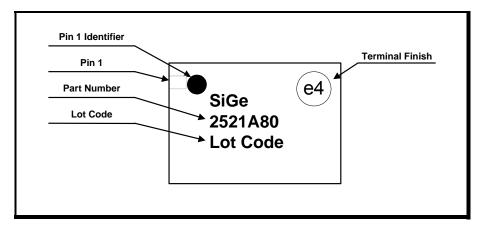


Figure 9: SE2521A80 Branding and Pin 1 Location

Tape and Reel

Production quantities of this product are shipped in a standard tape-and-reel format. Specific tape and reel dimensions and sizing is shown in Table 1 and Figure 10.

Parameter	Value		
Devices Per Reel	2500		
Reel Diameter	13 inches		

Table 1: Tape and Reel Dimensions

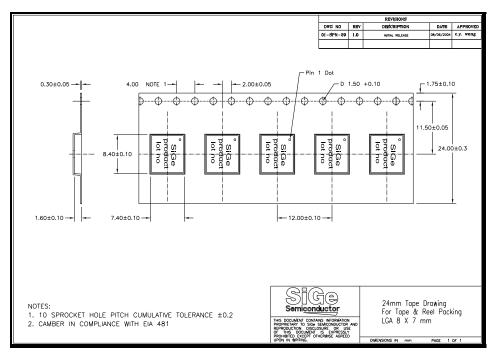


Figure 10: SE2521A80 Tape and Reel Information

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.