

## **General Description**

The MAX4030E/MAX4031E unity-gain stable op amps combine high-speed performance, rail-to-rail outputs, and ±15kV ESD protection. Targeted for applications where an input or an output is exposed to the outside world, such as video and communications, these devices are compliant with International ESD Standards: ±15kV IEC 1000-4-2 Air-Gap Discharge, ±8kV IEC 1000-4-2 Contact Discharge, and the ±15kV Human Body Model.

The MAX4030E/MAX4031E operate from a single 5V supply and consume only 12mA of quiescent supply current per amplifier while achieving a 144MHz -3dB bandwidth, 20MHz 0.1dB gain flatness, and a 115V/us slew rate. The MAX4031E provides individual shutdown control for each of the amplifiers.

The dual MAX4030E is available in 8-pin µMAX® and SO packages, and the triple MAX4031E is available in 14-pin TSSOP and SO packages. All devices are specified over the -40°C to +85°C extended temperature range.

## **Applications**

**Set-Top Boxes** Standard Definition Television (SDTV) **Enhanced Television** 

(ETV) **High-Definition** Television (HDTV) Notebooks **Projectors** 

Security Video Systems

Camcorders

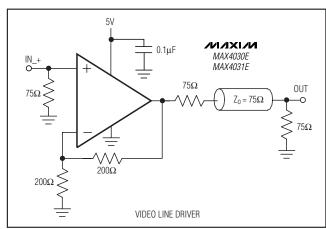
Digital Still Cameras

Portable DVD Players

#### Features

- **♦** ESD-Protected Video Inputs and Outputs ±15kV - Human Body Model ±8kV - IEC 1000-4-2 Contact Discharge ±15kV - IEC 1000-4-2 Air-Gap Discharge
- ♦ 5V Single-Supply Operation
- ♦ 0.1µA Low-Power Shutdown Mode (MAX4031E)
- ♦ Input Common-Mode Range Extends to Ground
- ♦ 2Vp-p Large-Signal -3dB BW > 50MHz
- ♦ Directly Drives 150Ω Loads
- ♦ Low Differential Gain/Phase: 0.2%/0.2°
- **♦** -40°C to +85°C Extended Temperature Range
- ♦ Compact 8-Pin µMAX and 14-Pin TSSOP **Packages**

## **Ordering Information**


| PART        | TEMP RANGE     | PIN-PACKAGE |
|-------------|----------------|-------------|
| MAX4030EEUA | -40°C to +85°C | 8 µMAX      |
| MAX4030EESA | -40°C to +85°C | 8 SO        |
| MAX4031EEUD | -40°C to +85°C | 14 TSSOP    |
| MAX4031EESD | -40°C to +85°C | 14 SO       |

µMAX is a registered trademark of Maxim Integrated Products, Inc.

## **Pin Configurations**

#### TOP VIEW SHDNA 14 OUTC 8 V<sub>CC</sub> OUTA 1 SHDNC 2 13 INC-7 OUTB MIXIM SHDNB 3 12 INC+ MAX4030E MAXIM 6 INB-INA+ 3 11 GND MAX4031E V<sub>CC</sub> 4 5 INB+ GND 4 INA+ 5 10 INB+ 9 INB-INA- 6 μ**MAX/SO** OUTA 7 8 OUTB TSSOP/SO

## Typical Operating Circuit



MIXIM

### **ABSOLUTE MAXIMUM RATINGS**

| (All voltages referenced to GND, unless otherwise noted.)         |
|-------------------------------------------------------------------|
| V <sub>C</sub> C0.3V to +6V                                       |
| IN, IN_+, OUT_, SHDN0.3V to (V <sub>CC</sub> + 0.3V)              |
| Current into IN, IN_+, SHDN±20mA                                  |
| Output Short-Circuit Duration to V <sub>CC</sub> or GNDContinuous |
| Continuous Power Dissipation (T <sub>A</sub> = +70°C)             |
| 8-Pin µMAX (derate 4.5mW/°C above +70°C)362mW                     |
| 8-Pin SO (derate 5.9mW/°C above +70°C)                            |

| 14-Pin TSSOP (derate 9.1mW/°C above +70° | C)727mW       |
|------------------------------------------|---------------|
| 14-Pin SO (derate 8.3mW/°C above +70°C)  | 667mW         |
| Operating Temperature Range              | 40°C to +85°C |
| Junction Temperature                     | +150°C        |
| Storage Temperature Range                |               |
| Lead Temperature (soldering, 10s)        | +300°C        |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V, V_{CM} = 0V, V_{OUT} = V_{CC}/2, \overline{SHDN} = V_{CC}, R_L = \infty \text{ to } V_{CC}/2, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$ 

| PARAMETER                         | SYMBOL            | CON                                                                   | IDITIONS                          | MIN | TYP  | MAX                    | UNITS    |  |
|-----------------------------------|-------------------|-----------------------------------------------------------------------|-----------------------------------|-----|------|------------------------|----------|--|
| Operating Supply Voltage Range    | Vcc               | Guaranteed by PSRR                                                    |                                   | 4.5 |      | 5.5                    | V        |  |
| Quiescent Current (per Amplifier) | Icc               |                                                                       |                                   |     | 12   | 22                     | mA       |  |
| Shutdown Current (per Amplifier)  | ISHDN             | SHDN_ = GND (MAX-                                                     | 4031E)                            |     | 0.1  | 10                     | μΑ       |  |
| Input Common-Mode Voltage         | V <sub>CM</sub>   | Guaranteed by CMRF                                                    | 3                                 | 0   |      | V <sub>CC</sub> - 2.25 | V        |  |
| Input Offset Voltage              | Vos               | $T_A = +25^{\circ}C$<br>$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |                                   |     | 5    | 13<br>26               | mV       |  |
| Input Offset Voltage Matching     | ΔVos              |                                                                       |                                   |     | 2.6  |                        | mV       |  |
| Input Offset Voltage Tempco       | TC <sub>VOS</sub> |                                                                       |                                   |     | 31   |                        | μV/°C    |  |
| Input Bias Current                | ΙΒ                |                                                                       |                                   |     | 0.01 | 1                      | μΑ       |  |
| Input Offset Current              | I <sub>OS</sub>   |                                                                       |                                   |     | 0.01 |                        | μΑ       |  |
| Input Resistance                  | RIN               |                                                                       |                                   |     | 1    |                        | GΩ       |  |
| Common-Mode Rejection Ratio       | CMRR              | GND ≤ V <sub>CM</sub> ≤ V <sub>CC</sub> - 2                           | 2.25V                             | 50  | 70   |                        | dB       |  |
| Power-Supply Rejection Ratio      | PSRR              | 4.5V ≤ V <sub>CC</sub> ≤ 5.5V                                         |                                   | 40  | 60   |                        | dB       |  |
|                                   | Avol              | $0.5V \le V_{OUT} \le 4.5V$ ,                                         | $R_L = 2k\Omega$ to $V_{CC}/2$    |     | 80   |                        |          |  |
| Open-Loop Gain                    |                   | $0.6V \le V_{OUT} \le 4.4V$                                           | $R_L = 150\Omega$ to $V_{CC}/2$   | 50  | 70   |                        | dB       |  |
|                                   |                   | $0.4V \le V_{OUT} \le 3.5V$ , $R_L = 150\Omega$ to GND                |                                   | 50  | 70   |                        |          |  |
| Output Voltage Swing VouT_        |                   | $R_L = 2k\Omega$ to $V_{CC}/2$                                        | VCC - VOH                         |     | 0.05 |                        | - V      |  |
|                                   |                   |                                                                       | V <sub>OL</sub> - GND             |     | 0.05 |                        |          |  |
|                                   | Vout_             | $R_L = 150\Omega$ to $V_{CC}/2$                                       | V <sub>CC</sub> - V <sub>OH</sub> |     | 0.15 | 0.4                    |          |  |
|                                   |                   |                                                                       | V <sub>OL</sub> - GND             |     | 0.15 | 0.4                    |          |  |
|                                   |                   | $R_L = 150\Omega$ to GND                                              | VCC - VOH                         |     | 0.3  | 0.8                    |          |  |
|                                   |                   |                                                                       | V <sub>OL</sub> - GND             |     | 0.01 | 0.05                   |          |  |
| Output Short-Circuit Current      | Isc               | Sinking or sourcing                                                   |                                   |     | ±100 |                        | mA       |  |
| SHDN_ Logic Threshold             | VIL               | MAX4031E<br>MAX4031E                                                  |                                   |     |      | 0.8                    | <u> </u> |  |
|                                   | VIH               |                                                                       |                                   | 2.0 |      |                        | V        |  |
| SHDN Logic Input Current          | I <sub>I</sub> L  | SHDN_ = GND (MAX                                                      | 4031E)                            |     | 0.10 | 10                     | μΑ       |  |
| SHDN_ Logic Input Current         | lін               | SHDN_ = V <sub>CC</sub> (MAX <sup>2</sup>                             | 4031E)                            |     | 0.10 | 10                     | μΑ       |  |

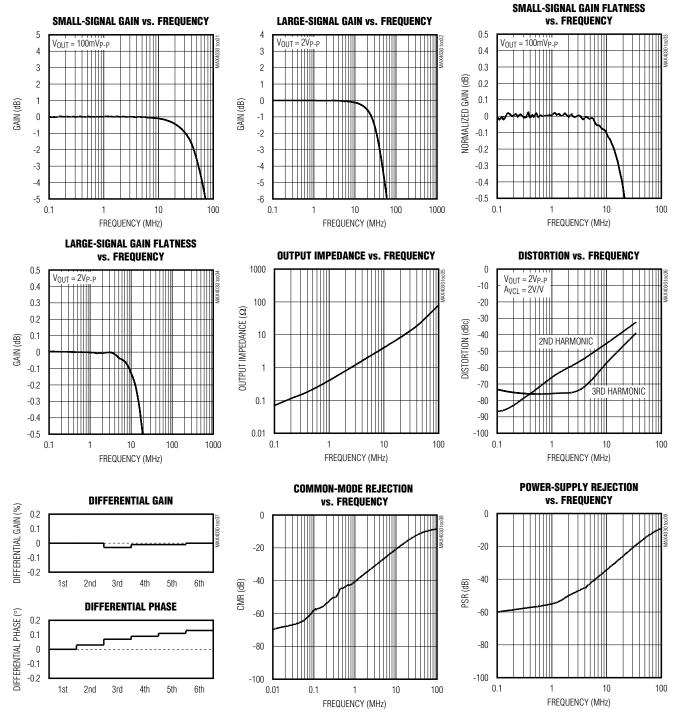
## **DC ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{CC} = 5V, V_{CM} = 0V, V_{OUT} = V_{CC}/2, \overline{SHDN} = V_{CC}, R_L = \infty \text{ to } V_{CC}/2, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$ 

| PARAMETER                       | SYMBOL  | CONDITIONS                     | MIN | TYP | MAX | UNITS |
|---------------------------------|---------|--------------------------------|-----|-----|-----|-------|
| Disabled Output Leakage Current | IOUT_SH | SHDN_ = GND (MAX4031E)         |     | 0.1 | 10  | μΑ    |
|                                 |         | Human Body Model               |     | ±15 |     |       |
| ESD Protection Voltage (Note 2) |         | IEC 1000-4-2 Contact Discharge |     | ±8  |     | kV    |
|                                 |         | IEC 1000-4-2 Air-Gap Discharge |     | ±15 |     |       |

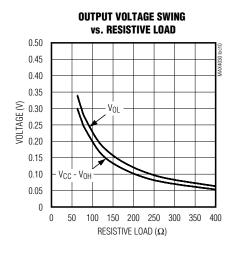
#### **AC ELECTRICAL CHARACTERISTICS**

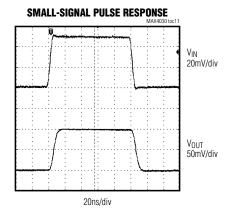
 $(V_{CC} = 5V, V_{CM} = 1.5V, R_L = 150\Omega \text{ to GND}, \overline{SHDN} = V_{CC}, A_{VCL} = +2V/V, T_A = +25^{\circ}C, unless otherwise noted.)$ 

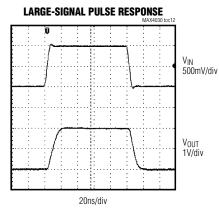

| PARAMETER                        | SYMBOL                | CONDITIONS                                                      | MIN | TYP  | MAX | UNITS   |  |
|----------------------------------|-----------------------|-----------------------------------------------------------------|-----|------|-----|---------|--|
| Small Signal, 3dR Bandwidth      | BW <sub>SS</sub>      | $V_{OUT} = 100 \text{mVp-p}, A_{VCL} = +1 \text{V/V}$           |     | 144  |     | MHz     |  |
| Small-Signal -3dB Bandwidth      |                       | $V_{OUT} = 100 \text{mVp-p}, A_{VCL} = +2 \text{V/V}$           |     | 53   |     |         |  |
| Large-Signal -3dB Bandwidth      | BWLS                  | $V_{OUT} = 2V_{P-P}, A_{VCL} = +1V/V$                           |     | 52   |     | MHz     |  |
| Large-Signal -305 Bandwidth      |                       | $V_{OUT} = 2V_{P-P}, A_{VCL} = +2V/V$                           |     | 40   |     |         |  |
| Small Signal O 1dB Coin Flatage  | DW                    | $V_{OUT} = 100 \text{mVp-p}, A_{VCL} = +1 \text{V/V}$           |     | 20   |     | MHz     |  |
| Small-Signal 0.1dB Gain Flatness | BW <sub>0.1dBSS</sub> | $V_{OUT} = 100 \text{mVp-p}, A_{VCL} = +2 \text{V/V}$           |     | 10   |     |         |  |
| Lorgo Signal O.1dP Cain Flatness | D\\\                  | V <sub>OUT</sub> = 2V <sub>P-P</sub> , A <sub>VCL</sub> = +1V/V |     | 20   |     | MHz     |  |
| Large-Signal 0.1dB Gain Flatness | BW <sub>0.1dBLS</sub> | V <sub>OUT</sub> = 2V <sub>P-P</sub> , A <sub>VCL</sub> = +2V/V |     | 9    |     | IVIHZ   |  |
| Slew Rate                        | SR                    | V <sub>OUT</sub> = 2V step                                      |     | 115  |     | V/µs    |  |
| Settling Time to 0.1%            | ts                    | V <sub>OUT</sub> _ = 2V step                                    |     | 40   |     | ns      |  |
| Channel-to-Channel Isolation     | CH <sub>ISO</sub>     | f = 4.43MHz                                                     |     | 65   |     | dB      |  |
| Differential Phase Error         | DP                    | NTSC, $R_L = 150\Omega$ to GND, $A_{VCL} = +2V/V$               |     | 0.2  |     | Degrees |  |
| Differential Gain Error          | DG                    | NTSC, $R_L = 150\Omega$ to GND, $A_{VCL} = +2V/V$               |     | 0.2  |     | %       |  |
| Input Capacitance                | CIN                   |                                                                 |     | 8    |     | pF      |  |
| Capacitive-Load Stability        |                       | No sustained oscillations                                       |     | 200  |     | рF      |  |
| Output Impedance                 | Z <sub>OUT</sub>      | f = 4.43MHz                                                     |     | 2    |     | Ω       |  |
| Enable Time                      | ton                   | V <sub>IN</sub> _ = 1V (MAX4031E)                               |     | 2    |     | μs      |  |
| Disable Time                     | toff                  | V <sub>IN</sub> _ = 1V (MAX4031E)                               |     | 0.15 |     | μs      |  |

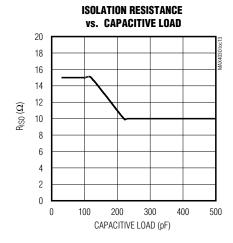
Note 1: All devices are 100% production tested at  $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design.

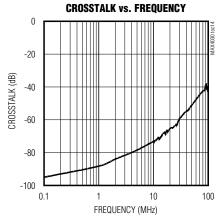
Note 2: ESD protection is specified for test point A and test point B only (Figure 7).


## Typical Operating Characteristics


 $(V_{CC} = 5V, V_{CM} = 1.5V, A_{VCL} = +2V/V, R_L = 150\Omega \text{ to } V_{CC}/2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 





## Typical Operating Characteristics (continued)


 $(V_{CC} = 5V, V_{CM} = 1.5V, A_{VCL} = +2V/V, R_L = 150\Omega$  to  $V_{CC}/2, T_A = +25$ °C, unless otherwise noted.)











### **Pin Description**

| P        | PIN      |       |                                                                              |  | FUNCTION |  |
|----------|----------|-------|------------------------------------------------------------------------------|--|----------|--|
| MAX4030E | MAX4031E | NAME  | FUNCTION                                                                     |  |          |  |
| 1        | 7        | OUTA  | Amplifier A Output                                                           |  |          |  |
| 2        | 6        | INA-  | Amplifier A Inverting Input                                                  |  |          |  |
| 3        | 5        | INA+  | Amplifier A Noninverting Input                                               |  |          |  |
| 4        | 11       | GND   | Ground                                                                       |  |          |  |
| 5        | 10       | INB+  | Amplifier B Noninverting Input                                               |  |          |  |
| 6        | 9        | INB-  | Amplifier B Inverting Input                                                  |  |          |  |
| 7        | 8        | OUTB  | Amplifier B Output                                                           |  |          |  |
| 8        | 4        | Vcc   | Positive Power Supply. Bypass V <sub>CC</sub> to GND with a 0.1µF capacitor. |  |          |  |
| _        | 1        | SHDNA | Amplifier A Shutdown Input. Connect SHDNA high to enable amplifier A.        |  |          |  |
| _        | 2        | SHDNC | Amplifier C Shutdown Input. Connect SHDNC high to enable amplifier C.        |  |          |  |
| _        | 3        | SHDNB | Amplifier B Shutdown Input. Connect SHDNB high to enable amplifier B.        |  |          |  |
| _        | 12       | INC+  | Amplifier C Noninverting Input                                               |  |          |  |
| _        | 13       | INC-  | Amplifier C Inverting Input                                                  |  |          |  |
| _        | 14       | OUTC  | JTC Amplifier C Output                                                       |  |          |  |

## **Detailed Description**

The MAX4030E/MAX4031E dual/triple, 5V operational amplifiers achieve 115V/µs slew rates and 144MHz bandwidths. High ±15kV ESD protection at video inputs and outputs guards against unexpected discharge. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

#### **Ground-Sensing Inputs**

The MAX4030E/MAX4031E input stage can sense common-mode voltages from ground to within 2.25V of the positive supply.

#### Rail-to-Rail Outputs

The MAX4030E/MAX4031E rail-to-rail outputs can swing to within 100mV of each supply because local feedback around the output stage ensures low open-loop output impedance, reducing gain sensitivity to load variations.

#### Shutdown (MAX4031E Only)

The MAX4031E offers individual shutdown control for each amplifier. Drive SHDN\_ low to shut down the amplifier. In shutdown, the amplifier output impedance is high impedance.

## **Applications Information**

#### **Choosing Resistor Values**

#### **Unity-Gain Configuration**

The MAX4030E/MAX4031E are internally compensated for unity gain. When configured for unity gain, a  $24\Omega$  resistor (RF) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and lead inductance.

#### Video Line Driver

The MAX4030E/MAX4031E are low-power, voltage-feedback amplifiers featuring bandwidths up to 40MHz and 0.1dB gain flatness to 9MHz. They are designed to minimize differential-gain error and differential-phase error to 0.2% and 0.2°, respectively. They have a 40ns settling time to 0.1%, 110V/µs slew rates, and output-current-drive capability of up to 50mA, making them ideal for driving video loads.

#### Inverting and Noninverting Configurations

Select the feedback (R<sub>F</sub>) and input (R<sub>G</sub>) resistor values to fit the gain requirements of the application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and

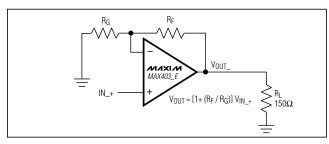



Figure 1. Noninverting Gain Configuration

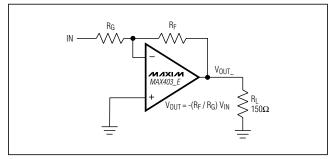



Figure 2. Inverting Gain Configuration

decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using  $2k\Omega$  resistors, combined with 4pF of amplifier input capacitance and 1pF of PC board capacitance, cause a pole at 79.6MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the  $2k\Omega$  resistors to  $100\Omega$  extends the pole frequency to 1.59GHz, but could limit output swing by adding  $200\Omega$  in parallel with the amplifier's load resistor (Figures 1 and 2).

#### **Layout and Power-Supply Bypassing**

These amplifiers operate from a single 5V power supply. Bypass  $V_{CC}$  to ground with a  $0.1\mu F$  capacitor as close to  $V_{CC}$  as possible. Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Under all conditions observe the following design guidelines:

- Do not use wire-wrap boards. Wire-wrap boards are too inductive.
- Do not use IC sockets. Sockets increase parasitic capacitance and inductance.
- Use surface mount instead of through-hole components for better high-frequency performance.

- Use a PC board with at least two layers. The PC board should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

#### **Output Capacitive Loading and Stability**

The MAX4030E/MAX4031E are optimized for AC performance and do not drive highly reactive loads, which decreases phase margin and can produce excessive ringing and oscillation. Figure 3 shows a circuit modification that uses an isolation resistor (RISO) to eliminate this problem. Figure 4 shows a graph of the Optimal Isolation Resistor (RISO) vs. Capacitive Load. Figure 5 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually  $10\Omega$  to  $15\Omega$ ) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, the interaction of the load capacitance and the isolation resistor controls the AC performance. Figure 6 shows the effect of a  $10\Omega$ isolation resistor on closed-loop response.

#### **ESD Protection**

As with all Maxim devices, ESD protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly. Input and output pins of the MAX4030E/MAX4031E have extra protection against static electricity. Maxim's engineers have developed state-of-the-art structures enabling these pins to withstand ESD up to ±15kV without damage when placed in the test circuit (Figure 7). The MAX4030E/MAX4031E are characterized for protection to the following limits:

- ±15kV using the Human Body Model
- ±8kV using the Contact Discharge method specified in IEC 1000-4-2
- ±15kV using the Air-Gap Discharge method specified in IEC 1000-4-2

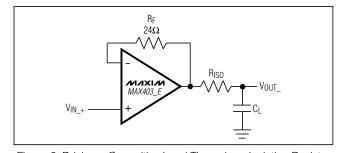



Figure 3. Driving a Capacitive Load Through an Isolation Resistor

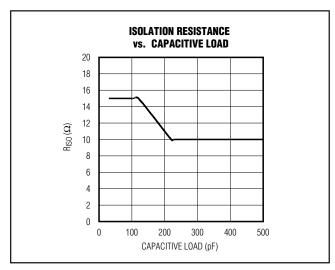



Figure 4. Isolation Resistance vs. Capacitive Load

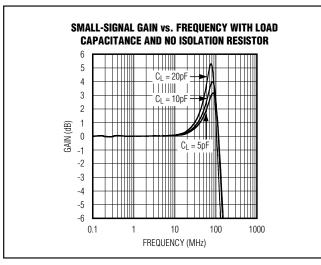



Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

#### Human Body Model

Figure 8 shows the Human Body Model and Figure 9 shows the current waveform it generates when discharged into low impedance. This model consists of a 150pF capacitor charged to the ESD voltage of interest, and then discharged into the test device through a  $1.5 \mathrm{k}\Omega$  resistor.

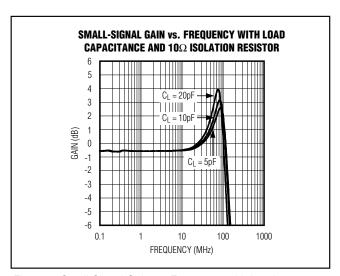



Figure 6. Small-Signal Gain vs. Frequency with Load Capacitance and  $10\Omega$  Isolation Resistor

#### IEC 1000-4-2

The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to ICs. The MAX4030E/MAX4031E enable the design of equipment that meets the highest level (level 4) of IEC 1000-4-2 without the need for additional ESD protection components. The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 model, the ESD-withstand voltage measured to this standard is generally lower than that measured using the Human Body. Figure 10 shows the IEC 1000-4-2 model and Figure 11 shows the current waveform for the ±8kV IEC 1000-4-2 level 4 ESD Contact Discharge test. The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

### \_Chip Information

MAX4030E TRANSISTOR COUNT: 271 MAX4031E TRANSISTOR COUNT: 387

PROCESS: BICMOS

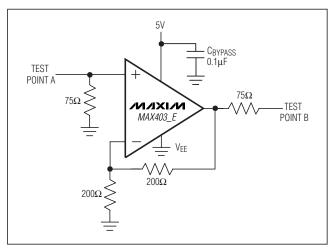



Figure 7. ESD Test Circuit

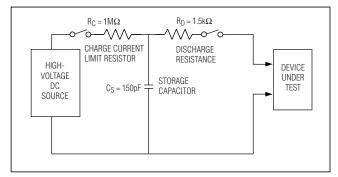



Figure 8. Human Body ESD Model

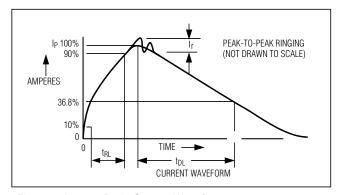



Figure 9. Human Body Current Waveform

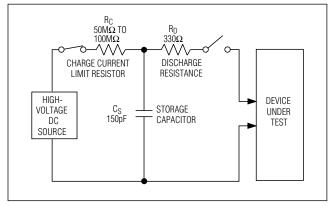



Figure 10. IEC 1000-4-2 ESD Test Model

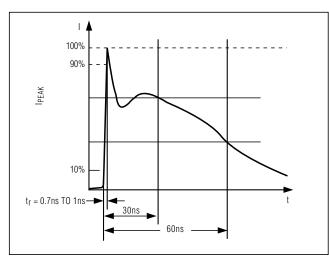
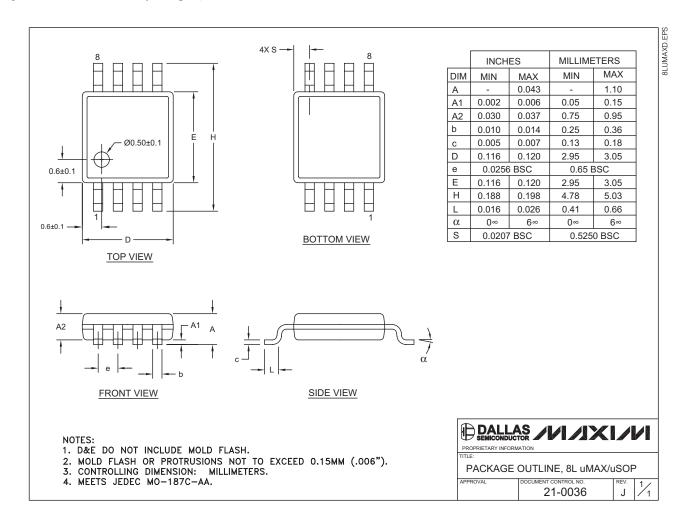
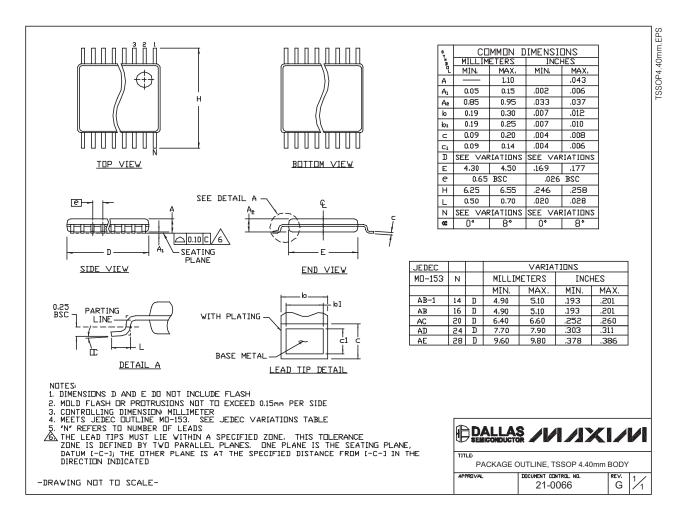




Figure 11. IEC 1000-4-2 ESD Generator Current Waveform


## Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)



### Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)



### Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <a href="https://www.maxim-ic.com/packages">www.maxim-ic.com/packages</a>.)



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.