

SE2595L: Dual Band 802.11n Wireless LAN Front End

Applications

- 802.11n. MIMO solutions
- IEEE802.11b DSSS WLAN
- IEEE802.11g OFDM WLAN
- IEEE802.11a OFDM WLAN
- Access Points, PCMCIA, PC cards

Features

- 1 Transmit and 1 receive path architecture for use as MIMO building block.
- All RF ports matched to 50 Ω
- Integrated 2.4/5 GHz PA, 2.4/5 GHz LNA, TX Filter, T/R switches and diplexers
- Integrated Power Detector
- 19 dBm O/P Power, 802.11b, 11 Mbits, ACPR = 32 dBc
- 18 dBm @ 3.0 % EVM, 802.11g, 54 Mbits
- 16 dBm @ 3.0 % EVM, 802.11a, 54 Mbits
- Single supply voltage: 3.3 V ± 10 %
- Lead free, Halogen Free and RoHS compliant
- Thin lead free plated package, 4 mm x 6 mm x 0.9 mm, MSL 1

Ordering Information

Part No.	Package	Remark
SE2595L	32 pin QFN	Samples
SE2595L-R	32 pin QFN	Tape & Reel
SE2595L-EK1	N/A	Evaluation kit

Product Description

The SE2595L is a complete 802.11n WLAN RF frontend module providing all the functionality of the power amplifiers, LNA, power detector, T/R switch, diplexers and associated matching. The SE2595L provides a complete 2.4 GHz and 5 GHz WLAN Multiple Input, Multiple Output (MIMO) RF solution from the output of the transceiver to the antennas in a compact form factor.

The receive path is designed to maximize performance by providing both a low noise amplifier as well as a bypass state, for use when high power signals are being received.

Designed for ease of use, all RF ports are matched to 50 Ω to simplify PCB layout and the interface to the transceiver RFIC. The SE2595L also includes a transmitter power detector for each band with 20 dB of dynamic range. The power ramp rise/fall time is less than 0.5 μ s.

The device also provides band pass filters for both the a and b/g bands prior to the input of each 2.4 GHz and 5 GHz power amplifiers, respectively.

SE2595L: Dual Band 802.11n Wireless LAN Front End

Functional Block Diagram

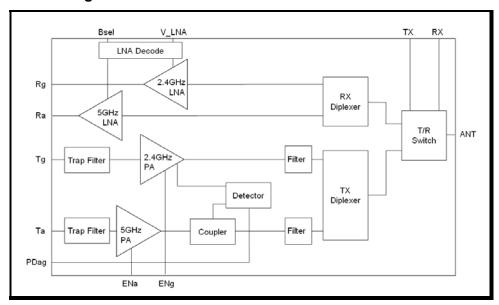


Figure 1: Functional Block Diagram

SE2595L: Dual Band 802.11n Wireless LAN Front End

Pin Out Diagram VLNA GND Rg Bsel GND GND NU NU TΧ RX 32 31 30 27 26 25 24 23 29 28 Ra 22 GND VCC 2 21 ANT GND 3 20 GND Τg 19 GND Ta 5 18 GND GND 6 17 GND 10 11 12 13 14 15 16 GND GND Det ENa ENg VCC1 VCC2 GND GND GND

Figure 2: SE2595L Pin Out (Top View Through Package)

Pin Out Description

Pin No.	Name	Description
1	Ra	5 GHz Receive Output
2	VCC	Supply Voltage, LNA
3	GND	Ground
4	Tg	2.4 GHz Transmit Input
5	Та	5 GHz Transmit Input
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	Det	Power Detector, 2.5 & 5 GHz
10	ENa	5 GHz PA Enable
11	ENg	2.4 GHz PA Enable
12	VCC1	Supply Voltage, Driver Stage
13	VCC2	Supply Voltage, Power Stage

Pin No.	Name	Description
14	GND	Ground
15	GND	Ground
16	GND	Ground
17	GND	Ground
18	GND	Ground
19	GND	Ground
20	GND	Ground
21	ANT	Antenna
22	GND	Ground
23	RX	Rx Switch Select
24	TX	Tx Switch Select
25	NU	Not Used
26	NU	Not Used

SE2595L: Dual Band 802.11n Wireless LAN Front End

Pin No.	Name	Description
27	GND	Ground
28	GND	Ground
29	GND	Ground

Pin No.	Name	Description
30	V_LNA	LNA Enable
31	Bsel	LNA Band Select
32	Rg	2.4 GHz Receive Output

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition	Min.	Max.	Unit
Vcc	Supply Voltage	-0.3	4.2	V
PU	ENg, ENa, V_LNA, Bsel	-0.3	4.0	V
TXRF	Ta, Tg, ANT terminated into 50Ω match	-	10.0	dBm
TA	Operating Temperature Range	-40	85	°C
Тѕтс	Storage Temperature Range	-40	150	°C
ESD _{HBM}	JEDEC JESD22-A114 all pins	150	-	V

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
TA	Ambient Temperature	-40	25	85	°C

DC Electrical Characteristics

Conditions: Vcc = 3.3 V, $T_A = 25 \text{ °C}$, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (dembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
TxIcc-g	Total 802.11g Transmit Supply Current	P _{OUT} = 17 dBm, 54 Mbps OFDM signal, 64QAM, ENg = 3.3 V, ENa = 0 V, TX = 3.3 V, RX = 0 V	-	180	ı	mA
TxIcq-G	Quiescent current , 802.11g Transmit supply Current	No RF applied ENg = 3.3 V, ENa = 0 V, TX = 3.3V, RX = 0 V	-	110	-	mA
TxIcc-A	Total 802.11a Transmit Supply Current	P_{OUT} = 17 dBm, 54 Mbps OFDM signal, 64QAM, ENa = 3.3 V, ENg = 0 V, TX = 3.3 V, RX = 0 V	-	230	•	mA

SE2595L: Dual Band 802.11n Wireless LAN Front End

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
TxIcq-A	Quiescent current , 802.11a Transmit supply Current	No RF applied ENa = 3.3V, ENg = 0V, TX = 3.3V, RX = 0V	-	155	-	mA
RxIcc-g	Total 802.11b/g Receive Supply Current	V_LNA = 3.3 V, Bsel = 3.3 V, RX = 3.3 V, TX = 0 V	-	8.5	15	mA
RxIcc-a	Total 802.11a Receive Supply Current	V_LNA = 3.3 V, Bsel = 0 V, RX = 3.3 V, TX = 0 V	-	8.5	15	mA
Icc_off	Total Supply Current	No RF, ENg = ENa = 0 V, V_LNA = 0 V, TX = RX = 0 V	-	2	100	μΑ

Transmit Power Amplifier Logic Characteristics

Conditions: Vcc = 3.3 V, TA = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (dembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VENH	Logic High Voltage for ENg, ENa (Module On)	-	-	2.0	Vcc	٧
VENL	Logic Low Voltage ENg, ENa (Module Off)	-	0	0.5	-	V
Іенн	Input Current Logic High Voltage (ENg, ENa)	-	-	100	150	μΑ
lenl	Input Current Logic Low Voltage (ENg, ENa)	-	-	0.2	-	μΑ

Receive LNA Logic Characteristics

Conditions: Vcc = 3.3 V, $T_A = 25 ^{\circ}\text{C}$, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (dembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VRENH	Logic High Voltage for V_LNA, Bsel (Module On)	-	ı	3.2	Vcc	V
VRENL	Logic Low for V_LNA, Bsel (Module Off)	-	-0.5	0.3	-	V
IRENH	Input Current Logic High Voltage (V_LNA, Bsel)	-	-	-	400	μΑ
İRENL	Input Current Logic Low Voltage (V_LNA, Bsel)	-	-	0	-	μΑ

SE2595L: Dual Band 802.11n Wireless LAN Front End

LNA Ena	LNA Enable Logic		unction	Comment
V_LNA	Bsel	2.4 GHz LNA	5 GHz LNA	Comment
VRENL	VRENL	Bypass Mode	Bypass Mode	No gain in either path. This can be used for high input signal conditions.
VRENL	VRENH	Bypass Mode	Bypass Mode	No gain in either path. This can be used for high input signal conditions.
VRENH	VRENL	Off	On	Activates a-band LNA
VRENH	VRENH	On	Off	Activates bg-band LNA

RF Switch Characteristics

Conditions: Vcc = Ven = 3.3 V, Ta = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vctl_on	Control Voltage (On State)	-	3.0	-	3.6	V
VCTL_OFF	Control Voltage (OFF State)	-	0.0	-	0.2	V
SWon	Low Loss Switch Control Voltage	High State = Vctl_on - Vctl_off	2.8	-	Vcc	V
SWoff	High Loss Switch Control Voltage	Low State = Vctl_off - Vctl_off	0	-	0.2	٧
ICTL_ON	Switch Control Bias Current (RF Applied)	On pin (TX, RX) being driven high. RF Applied	-	-	100	μΑ
ICTL_ON	Switch Control Bias Current (No RF)	On pin (TX, RX) being driven high. No RF	-	-	30	μА
Ссть	Control Input Capacitance	-	-	-	100	pF

RF Swite	ch Logic	RF Switch Function		
CTRL_T	CTRL_R	Tg, Ta – ANT	Rg, Ra – ANT	
SWon	SWoff	ON	OFF	
SWoff	SWon	OFF	ON	

SE2595L: Dual Band 802.11n Wireless LAN Front End

2.4 GHz AC Electrical Characteristics

2.4 GHz Transmit Characteristics

Conditions: Vcc = 3.3 V, ENg = TX = 3.3 V, V_LNA = ENa = RX = 0 V, TA = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with

50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fin	Frequency Range	-	2400	-	2485	MHz
P _{802.11g}	Output power	54 Mbps OFDM signal, 64QAM, EVM ≤ 3.0 %	17	18	-	dBm
P802.11b	Output power	11 Mbps CCK signal, BT = 0.45 ACPR(Adj) < -32 ACPR(Alt) < -52	19	20	-	dBm
BEVM	Backed Off EVM	54 Mbps, OFDM signal, 64 QAM, P ≤ 12 dBm	-	1.5	-	%
P _{1dB}	P1dB	-	-	23	-	dBm
S ₂₁	Small Signal Gain	2400 – 2485 MHz 960 – 1600 MHz 1600 – 1660 MHz 3260 – 3267 MHz	23 - - -	- - -	30 0 0 2	dB
ΔS21	Small Signal Gain Variation Over Band	Over any 40 MHz band	-	-	0.5	dB
2f,3f	Harmonics	Pout = 18 dBm, 1 Mbps, BPSK	-	-50	-45.2	
21,31	Haimonics	Pout = 17 dBm, 54Mbps OFDM signal		-55	-48.2	dBm
NF	Noise Figure	Pout < 20 dBm	-	-	10	dB
t r	Rise Time	10 % to 90% of final output power level	-	-	0.5	μs
tdr, tdf	Delay and rise/fall Time	50 % of VEN edge and 90/10 % of final output power level	-	-	0.5	μs
S ₁₁	Input Return Loss	-	-	10	-	dB
Spur	Spurious	Pout < 20 dBm, VSWR = 2:1 100 MHz to 10 GHz	-	-	-45	dBm/MHz
STAB	Stability	Pout ≤ 20dBm Load VSWR = 10:1	All non-harmonically related outputs less than -50 dBc/1MHz			outs less than

SE2595L: Dual Band 802.11n Wireless LAN Front End

2.4 GHz Receive Characteristics

Conditions: VCC = V_LNA = Bsel = RX = 3.3V, ENg = ENa = TX = 0 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	2400	-	2500	MHz
S ₂₁	Receive Gain, LNA enabled.	2400 – 2485 MHz 800 – 1200 MHz 1200 – 1700 MHz 1700 – 1900 MHz 3200 – 6000 MHz	11 - - - -	13 - - - 10	- -10 3 10 -	dB
	Receive Gain, Bypass mode	V_LNA = 0 V 2400 – 2485 MHz	-	-7	-	dB
Δ\$21	Gain Variation	2400 – 2485 MHz, Over any 40MHz band	-	-	.5	dB
NF	Noise Figure		-	2.6 7	2.8 -	dB
IIP3	Third Order Intercept	2.45GHz, 1MHz offset	-	9	-	dBm
ISOL _{RRX}	Reverse Isolation	V_LNA = 0V, RX = 0 V	-	-23	-	dB
INT	Interferer	With this input , IIP3 can only degrade by 1dB	-10	-	-	dBm
S ₁₁	Input Return Loss	-	10	12	-	dB
IP1dB	Input P1dB	V_LNA = 3.3 V V_LNA = 0 V	-	-3.5 8	-	dBm
T _{EN}	Enable Time	10% to 90% of RX RF power, from time that V_LNA is at 50%	-	-	500	nsec

SE2595L: Dual Band 802.11n Wireless LAN Front End

5 GHz AC Electrical Characteristics

5 GHz Transmit Characteristics

Conditions: VCC = 3.3 V, ENa = TX = 3.3 V, V_LNA = ENg = RX = 0 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fin	Frequency Range	-	4900	-	5850	MHz
P _{802.11a}	Nominal Output Power	54 Mbps OFDM signal, 64 QAM, EVM = 3.0 %	1	16	-	dBm
BEVM	Backed Off EVM	54 Mbps, OFDM signal, 64 QAM, P ≤ 7 dBm	1	1.5	-	%
P_{1dB}	P1DB	-	-	21	-	dBm
S21	Small Signal Gain	4900 - 5850 MHz 960 - 3265 MHz 3265 - 3900 MHz 6900 - 7250 MHz 7250 - 7800 MHz 7800 - 8500 MHz	22 - - - - -	- -30 -10 -10 -12 -10	31 10 8 6 -10	dB
4.0	Small Signal Gain Variat	ion Over 40 MHz Channel	-	0.4	-	dB
ΔS21	Small Signal Gain Variat	ion Over Band	-	6	-	dB
2f,3f	Harmonics, 54Mbps, 802.11a signal	Pout = 16dBm 4900 – 5150 MHz 5150 – 5850 MHz	-	-45 -50	-42 -48	dBm/MHz
NF	Noise Figure	Pout < 16 dBm 4900 – 5850 MHz	-	-	10	dB
tr	Rise Time	10 % to 90% of final output power level	-	-	0.8	μs
tdr, tdf	Delay and rise/fall Time	50 % of V _{EN} edge and 90/10 % of final output power level	-	-	0.5	μs
S ₁₁	Input Return Loss	-	-	8	-	dB
SPUR	Spurious	Pout < 16dBm, VSWR = 2:1, 100 – 24000 MHz	-	-	-45	dBm/MHz
STAB	Stability	Pout ≤ 17 dBm Load VSWR = 10:1	All non-harmonically related outputs less		outs less than	

SE2595L: Dual Band 802.11n Wireless LAN Front End

5 GHz Receive Characteristics

Conditions: VCC = V_LNA = RX = 3.3 V, Bsel = ENg = ENa = TX = 0 V, T_A = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	4900	-	5850	MHz
S21	Receive Gain	4900 – 5850 MHz 800 – 2500 MHz 2500 – 3900 MHz 6500 – 7800 MHz	- - -	12 -10 6 11	- -5 -	dB
	Receive Gain, Bypass mode	V_LNA = 0.0 V	-	-7	-	dB
ΔS21	Gain Variation	4900 – 5850 MHz, Over any 40MHz band	-	ı	0.5	dB
NF	Noise Figure		-	2.8	3.2	dB
IIP3	Third Order Intercept	5.45GHz, 1MHz offset	-	-3	-	dBm
ISOL _{RRX}	Reverse Isolation	V_LNA = 0V, RX = 0V	-	20	-	dB
INT	Interferer	With this input IIP3 can only degrade by 1dB	-10	-	-	dBm
S ₁₁	Return Loss	-	-	8	-	dB
IP1dB	Input P1dB	V_LNA = 3.3 V V_LNA = 0 V	-	-3 10	-	dBm
T _{EN}	Enable Time	10% to 90% of RX RF power, from time that V_LNA is at 50%	-	-	500	nsec

2.4 GHz Power Detector Characteristics

Conditions: Vcc = 3.3 V, ENg = TX = 3.3 V, V_LNA = RX = ENa = 0 V, TA = 25 °C, as measured on Skyworks Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fоuт	Frequency Range	-	2400	ı	2500	MHz
PDR	Power detect range, peak power	Measured at ANT	0	-	22	dBm
PDZLOAD	DC load impedance	-	-	2.7	3	kΩ
PDV _{P22}	Output Voltage, Pout = 21 dBm	-	-	0.86	-	V
PDV _{p0}	Output Voltage, Pout = 5 dBm	-	-	0.35	-	V

SE2595L: Dual Band 802.11n Wireless LAN Front End

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
PDVpnoRF	Output Voltage, Pout = No RF	-	-	0.32	-	V
LPF-3dB (Note 2)	Power detect low pass filter -3dB corner frequency	Load = high impedance Typ: 500 kΩ	270	300	400	KHz

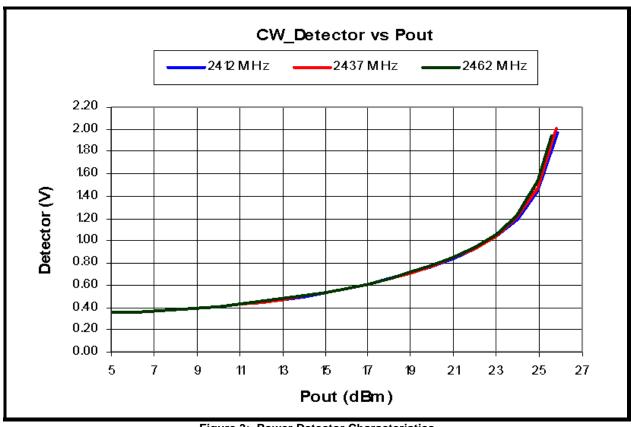
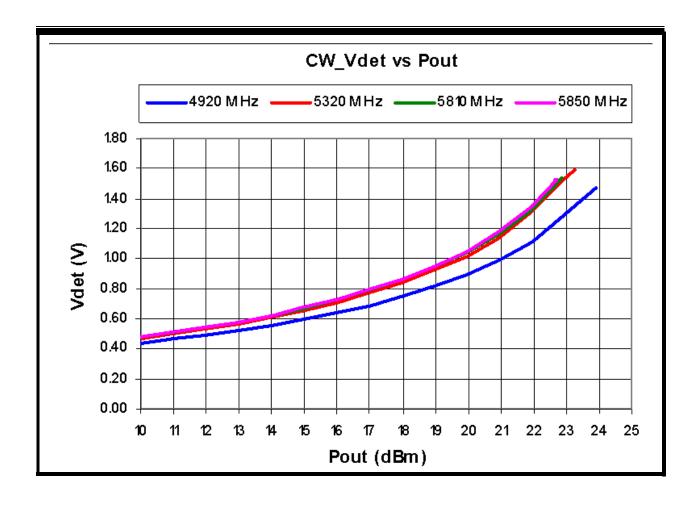


Figure 3: Power Detector Characteristics

SE2595L: Dual Band 802.11n Wireless LAN Front End

5 GHz Power Detector Characteristic

Conditions: Vcc = 3.3 V, ENa = TX = 3.3 V, $V_LNA = RX = ENg = 0 \text{ V}$, $T_A = 25 \, ^{\circ}\text{C}$, as measured on Skyworks


Solutions' SE2595L-EV1 evaluation board (de-embedded to device), all unused ports terminated with

50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	4900	-	5850	MHz
PDR	Power detect range, peak power	Measured at ANT	0	-	20	dBm
PDZLOAD	DC load impedance	-	-	2.7	3	kΩ
PDV _{P20}	Output Voltage, Pout = 17 dBm	-	-	0.80	-	V
PDV _{p0}	Output Voltage, Pout = 3 dBm	-	-	0.34	-	V
PDVpnoRF	Output Voltage, Pout = No RF	-	-	0.32	-	V
LPF-3dB (Note 3)	Power detect low pass filter -3dB corner frequency	Load = high impedance Typ: 500 kΩ	270	300	400	KHz

DATA SHEET SE2595L: Dual Band 802.11n Wireless LAN Front End

SE2595L: Dual Band 802.11n Wireless LAN Front End

Package Diagram ⊕ fff@CAB 0.30 x 45° В -SEE NOTE 4 ⊕ fff@CAB \Box E2/2 2x 🗀 aaa C 2x 🗀 aaa C -SEATING PLANE ⊕ bbb W C A B TOP VIEW // ccc C **BOTTOM VIEW** DIMENSION TABLE | NDM | MAX | 0.850 | 0.900 | - 0.050 TOLERANCE OF FORM & POSITION aga 0.15 bbb 0.10 ccc 0.10 ddd 0.05

Figure 4: Package Outline Drawing

Recommended Land and Solder Patterns

DATA SHEET SE2595L: Dual Band 802.11n Wireless LAN Front End

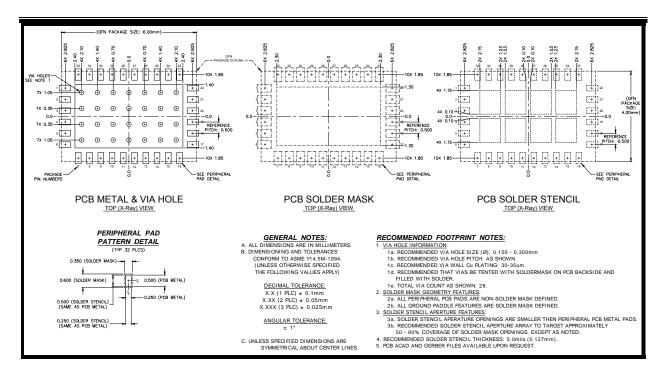
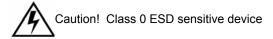



Figure 5: Recommended Land and Solder Pattern

Package Handling Information

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE2595L is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended, please refer to:

- "Quad Flat No-Lead Module Solder Reflow & Rework Information", Document Number QAD-00045
- "Handling, Packing, Shipping and Use of Moisture Sensitive QFN", Document Number QAD-00044
- "ESD Control Policy", *Document Number* SQ03-0062

SE2595L: Dual Band 802.11n Wireless LAN Front End

Tape and Reel Information

Parameter	Value
Devices Per Reel	3000
Reel Diameter	13 inches
Tape Width	16 millimeters

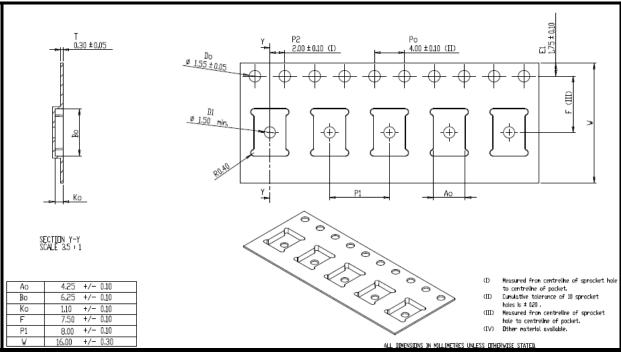


Figure 6: Tape and Reel Information

Branding Information

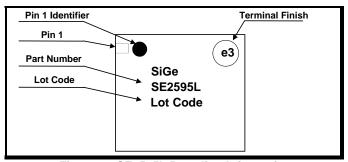


Figure 7: SE2595L Branding Information

SE2595L: Dual Band 802.11n Wireless LAN Front End

Document Change History

Revision	Date	Notes
1.0	June 29, 2008	Create
1.1	March 11, 2009	Update Gain in both bands Updated detector characteristics Updated packing method to Tape & Reel Added package outline drawing and recommended land pattern Updated input return loss. Updated RX IIP3
1.2	April 6, 2009	Updated LNA characteristics. Corrected product and terminal finish marking on Branding information
1.3	April 29, 2009	Updated LNA Logic Characteristics (I _{RENH}) to 400uA
1.4	May 1, 2009	Updated detector characteristics
1.5	July 30, 2009	Updated 5GHz Gain Characteristics
1.6	Aug 28, 2009	Updated Tape and Reel drawings.
1.7	Jan 11, 2010	Updated ICC_OFF specification.
1.8	Jan 8, 2011	Updated MSL rating to MSL 1
1.9	Apr 9, 2011	Updated recommended operating conditions to industrial temperature range
2.0	Mar 28, 2012	Updated with Skyworks logo and disclaimer statement

SE2595L: Dual Band 802.11n Wireless LAN Front End

Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.