Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

Abstract

General Description The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating voltages range from 2.5 V to 5.5 V , making them ideal for both 3 V and 5 V systems. These comparators also operate with $\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ dual supplies. They consume only $11 \mu \mathrm{~A}$ of supply current while achieving a 300ns propagation delay.

Input bias current is typically 1.0pA, and input offset voltage is typically 0.5 mV . Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage's unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX985/MAX989/MAX993 have a push-pull output stage that sinks as well as sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8mA. The MAX986/MAX990/MAX994 have an open-drain output stage that can be pulled beyond VCC to 6V (max) above VEE. These open-drain versions are ideal for level translators and bipolar to singleended converters.

The single MAX985 is available in a chip-scale package (UCSP ${ }^{\text {™ }}$), significantly reducing the required PC board area. The single MAX985/MAX986 are available in 5-pin SC70 packages and the dual MAX989/MAX990 are available in 8-pin SOT23 packages.

Selector Guide

PART	COMPARATORS PER PACKAGE	OUTPUT STAGE
MAX985	1	Push-Pull
MAX986	1	Open-Drain
MAX989	2	Push-Pull
MAX990	2	Open-Drain
MAX993	4	Push-Pull
MAX994	4	Open-Drain

Applications

Portable/Battery-
Powered Systems
Mobile Communications
Zero-Crossing Detectors
Window Comparators
Level Translators

Threshold Detectors/ Discriminators
Ground/Supply-Sensing Applications
IR Receivers
Digital Line Receivers

UCSP is a trademark and μ MAX is a registered trademark of Maxim Integrated Products, Inc.

Features

- 11رA Quiescent Supply Current

- 2.5V to 5.5V Single-Supply Operation

- Common-Mode Input Voltage Range Extends 250mV Beyond the Rails
- 300ns Propagation Delay
- Push-Pull Output Stage Sinks and Sources 8mA Current (MAX985/MAX989/MAX993)
- Open-Drain Output Voltage Extends Beyond Vcc (MAX986/MAX990/MAX994)
- Unique Output Stage Reduces Output Switching Current, Minimizing Overall Power Consumption
- $80 \mu \mathrm{~A}$ Supply Current at 1 MHz Switching Frequency
- No Phase Reversal for Overdriven Inputs
- Available in Space-Saving Packages:

UCSP (MAX985)
SOT23 (MAX985/MAX986/MAX989/MAX990) μ MAX $^{\circledR}$ (MAX989/MAX990)

Ordering Information

PART	PIN-PACKAGE	TOP MARK
MAX985EBT+T	6 UCSP-6	AAY
MAX985EXK+T	5 SC70-5	ABK

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
Ordering Information continued at end of data sheet. Typical Application Circuit appears at end of data sheet.

Pin Configurations
TOP VIEW
(BUMPS ON BOTTOM)

Pin Configurations continued at end of data sheet.

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Vcc to Vee)	.6V
Current into Input Pins	mA
IN_-, IN_+ to VEE	-0.3V to (Vcc + 0.3V)
OUT_ to Vee	
MAX985/MAX989/MAX993	-0.3V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
MAX986/MAX990/MAX994.	-0.3V to 6V
OUT_ Short-Circuit Duration to10s
Continuous Power Dissipation	board, $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5-Pin SC70 (derate 3.1mW/ ${ }^{\circ}$	(0${ }^{\circ} \mathrm{C}$.............. 247 mW
5-Pin SOT23 (derate 3.9mW/	$\left.70^{\circ} \mathrm{C}\right)312 .6 \mathrm{~mW}$
	$\left.+70^{\circ} \mathrm{C}\right) \ldots \ldots308 \mathrm{~mW}$

-Pin SOT23 (derate $5.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)408.2mW	
above +70	
8 -Pin SO (derate $7.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	
14-Pin TSSOP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
14-Pin SO (derate $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)...........952.4mW	
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature .. $150^{\circ} \mathrm{C}$	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s)	
Soldering Temperature (reflow) +	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V} C M=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{VEE}=0 \mathrm{~V}, \mathrm{VCM}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
OUT Output Voltage High (MAX985/MAX989/ MAX993 only)	VOH	$\begin{aligned} & \mathrm{V} \text { CC }=5 \mathrm{~V}, \\ & \text { ISOURCE }=8 \mathrm{~mA} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4.6	4.85		V
				$\mathrm{T}_{\mathrm{A}}=$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4.45			
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\mathrm{T}_{\mathrm{A}}=$	$+25^{\circ} \mathrm{C}$	2.4	2.55		
		ISOURCE $=$	3.5 mA	$\mathrm{T}_{\mathrm{A}}=$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2.3			
OUT Rise Time				$C_{L}=$	15 pF		40		
(MAX985/MAX989/	trise	$V_{C C}=5.0 \mathrm{~V}$		$C_{L}=$	50pF		50		ns
MAX993 only)				$C_{L}=$	200pF		80		
				$\mathrm{C}_{\mathrm{L}}=$	15 pF		40		
OUT Fall Time	tFALL	$V_{C C}=5.0 \mathrm{~V}$		$C_{L}=$	50pF		50		ns
				$C_{L}=$	200pF		80		
			MAX	x989/	10 mV overdrive		450		
			MAX		100mV overdrive		300		
	tpD-	$C \mathrm{~L}=15 \mathrm{pF}$		X990/	10mV overdrive		450		
			RpuL	.1k Ω	100mV overdrive		300		
		MAX985/M	X989		10 mV overdrive		450		
	tPD+	MAX993 on	y, CL		100mV overdrive		300		
Power-Up Time	tpu						20		$\mu \mathrm{s}$

Note 1: All device specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the extended temperature range are guaranteed by design.
Note 2: Inferred from the Vos test. Both or either inputs can be driven 0.3 V beyond either supply rail without output phase reversal.
Note 3: VOS is defined as the center of the hysteresis band at the input.
Note 4: I_{B} is defined as the average of the two input bias currents ($\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}_{+}}$).

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

Typical Operating Characteristics
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

BUMP	PIN				NAME	FUNCTION
MAX985	MAX985/ MAX986		MAX989/ MAX990	MAX993/ MAX994		
UCSP*	SO	$\begin{gathered} \text { SOT23/ } \\ \text { SC70 } \end{gathered}$	$\begin{aligned} & \text { SO/LMAXI } \\ & \text { SOT23 } \end{aligned}$	$\begin{gathered} \text { SO/ } \\ \text { TSSOP } \end{gathered}$		
A2	6	1	-	-	OUT	Comparator Output
A3	7	2	8	4	VCC	Positive Supply Voltage
B1	3	3	-	-	$1 \mathrm{~N}+$	Comparator Noninverting Input
B2	2	4	-	-	IN-	Comparator Inverting Input
A1	4	5	4	11	V_{EE}	Negative Supply Voltage
-	-	-	1	1	OUTA	Comparator A Output
-	-	-	2	2	INA-	Comparator A Inverting Input
-	-	-	3	3	INA+	Comparator A Noninverting Input
-	-	-	5	5	INB+	Comparator B Noninverting Input
-	-	-	6	6	INB-	Comparator B Inverting Input
-	-	-	7	7	OUTB	Comparator B Output
-	-	-	-	8	OUTC	Comparator C Output
-	-	-	-	9	INC-	Comparator C Inverting Input
				10	INC+	Comparator C Noninverting Input
				12	IND+	Comparator D Noninverting Input
				13	IND-	Comparator D Inverting Input
				14	OUTD	Comparator D Output
B3	1, 5, 8	-	-	-	N.C.	No Connection. Not internally connected.

*MAX985 only

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

Detailed Description

The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between 2.5 V and 5.5 V and consume only $11 \mu \mathrm{~A}$. Their common-mode input voltage range extends 0.25 V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-to-rail output swing with up to 8 mA loads.
The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX985/MAX989/MAX993 have a push-pull output structure that sinks as well as sources current. The MAX986/MAX990/MAX994 have an opendrain output stage that can be pulled beyond V_{C} to an absolute maximum of 6 V above V_{EE}.

Input Stage Circuitry

The devices' input common-mode range extends from -0.25 V to (Vcc +0.25 V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0 pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.

Output Stage Circuitry

These comparators contain a unique output stage capable of rail-to-rail operation with up to 8 mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The Typical Operating Characteristics graph Supply Current vs. Output Transition Frequency shows the minimal supply-current increase as the output switching frequency approaches 1 MHz . This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in highspeed, battery-powered applications is a substantial increase in battery life.

Figure 1. Additional Hysteresis (MAX985/MAX989/MAX993)

Applications Information

Additional Hysteresis

 MAX985/MAX989/MAX993The MAX985/MAX989/MAX993 have $\pm 3 \mathrm{mV}$ internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX985/MAX989/MAX993.

1) Select R3. Leakage current at $I N$ is under $10 n A$, so the current through R3 should be at least $1 \mu \mathrm{~A}$ to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF - Vout) / R3. Considering the two possible output states in solving for $R 3$ yields two formulas: $R 3=V_{R E F} / 1 \mu \mathrm{~A}$ or R3 $=\left(V_{\text {REF }}-V_{C C}\right) / 1 \mu \mathrm{~A}$. Use the smaller of the two resulting resistor values. For example, if $\mathrm{V}_{\text {REF }}=$ 1.2 V and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, then the two R 3 resistor values are $1.2 \mathrm{M} \Omega$ and $3.8 \mathrm{M} \Omega$. Choose a $1.2 \mathrm{M} \Omega$ standard value for R3.
2) Choose the hysteresis band required (VHB). For this example, choose 50 mV .
3) Calculate R1 according to the following equation:

$$
\mathrm{R} 1=\mathrm{R} 3 \times\left(\mathrm{V}_{\mathrm{HB}} / \mathrm{V}_{\mathrm{CC}}\right)
$$

For this example, insert the values $\mathrm{R} 1=1.2 \mathrm{M} \Omega \times$ $(50 \mathrm{mV} / 5 \mathrm{~V})=12 \mathrm{k} \Omega$.
4) Choose the trip point for V_{IN} rising ($\mathrm{V}_{\mathrm{THR}}$; $\mathrm{V}_{\mathrm{THF}}$ is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V.

Micropower, Low-Voltage, UCSP/SC70,
 Rail-to-Rail I/O Comparators

5) Calculate R2 as follows. For this example, choose an $8.2 \mathrm{k} \Omega$ standard value:
$R 2=\frac{1}{\left(\frac{V_{T H R}}{V_{R E F} \times R 1}\right)-\frac{1}{R 1}-\frac{1}{R 3}}$
$\mathrm{R} 2=\frac{1}{\left(\frac{3.0 \mathrm{~V}}{1.2 \times 12 \mathrm{k} \Omega}\right)-\frac{1}{12 \mathrm{k} \Omega}-\frac{1}{2.2 \mathrm{M} \Omega}}=8.03 \mathrm{k} \Omega$
6) Verify trip voltages and hysteresis as follows:
V_{IN} rising: $\mathrm{V}_{\mathrm{THR}}=\mathrm{V}_{\mathrm{REF}} \times \mathrm{R} 1 \times\left(\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}\right)$
V_{IN} falling: $\mathrm{V}_{\mathrm{THF}}=\mathrm{V}_{\mathrm{THR}}-\left(\frac{\mathrm{R} 1 \times \mathrm{V}_{\mathrm{CC}}}{\mathrm{R} 3}\right)$
Hysteresis $=\mathrm{V}_{\mathrm{THR}}-\mathrm{V}_{\mathrm{THF}}$

MAX986/MAX990/MAX994
The MAX986/MAX990/MAX994 have $\pm 3 \mathrm{mV}$ internal hysteresis. They have open-drain outputs and require an external pullup resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX985/MAX989/MAX993.

Figure 2. Additional Hysteresis (MAX986/MAX990/MAX994)

Use the following procedure to calculate resistor values:

1) Select R3 according to the formulas R3 = VREF / $500 \mu \mathrm{~A}$ or $\mathrm{R} 3=\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{CC}}\right) / 500 \mu \mathrm{~A}-\mathrm{R} 4$. Use the smaller of the two resulting resistor values.
2) Choose the hysteresis band required (VHB). For this example, choose 50 mV .
3) Calculate R1 according to the following equation:

$$
R 1=(R 3+R 4) \times\left(V_{H B} / V_{C C}\right)
$$

4) Choose the trip point for $V_{I N}$ rising ($V_{T H R}$; $V_{T H F}$ is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point.
5) Calculate R2 as follows:

$$
R 2=\frac{1}{\left(\frac{V_{T H R}}{V_{R E F} \times R 1}\right)-\frac{1}{R 1}-\frac{1}{R 3+R 4}}
$$

6) Verify trip voltages and hysteresis as follows:

$$
\begin{aligned}
& V_{I N} \text { rising: } V_{T H R}=V_{R E F} \times R 1 \times \\
& \\
& \left(\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3+R 4}\right) \\
& V_{I N} \text { falling: } V_{T H F}=V_{T H R}-\left(\frac{R 1 \times V_{C C}}{R 3+R 4}\right) \\
& \text { Hysteresis }=V_{T H R}-V_{T H F}
\end{aligned}
$$

Board Layout and Bypassing

Power-supply bypass capacitors are not typically needed, but use 100 nF bypass capacitors when supply impedance is high, when supply leads are long, or when excessive noise is expected on the supply lines. Minimize signal trace lengths to reduce stray capacitance.

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

Zero-Crossing Detector

Figure 3 shows a zero-crossing detector application. The MAX985's inverting input is connected to ground, and its noninverting input is connected to a 100 mV P-p signal source. As the signal at the noninverting input crosses 0 V , the comparator's output changes state.

Logic-Level Translator

Figure 4 shows an application that converts 5 V logic levels to 3 V logic levels. The MAX986 is powered by the 5 V supply voltage, and the pullup resistor for the MAX986's open-drain output is connected to the 3 V supply voltage. This configuration allows the full 5 V logic swing without creating overvoltage on the 3 V logic inputs. For 3 V to 5 V logic-level translation, simply connect the 3 V supply to VCC and the 5V supply to the pullup resistor.

Figure 3. Zero-Crossing Detector

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note: UCSP-A Wafer-Level Chip-Scale Package on Maxim's web site at www.maxim-ic.com/ucsp.

Figure 4. Logic-Level Translator

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

Typical Application Circuit
_Ordering Information (continued)

PART	PIN-PACKAGE	TOP MARK
MAX985EUK+T	5 SOT23-5	ABYZ
MAX985ESA +	8 SO	-
MAX986EXK+T	5 SC70-5	ABL
MAX986EUK+T	5 SOT23-5	ABZA
MAX986ESA +	8 SO	-
MAX989EKA+T	8 SOT23-8	AADZ
MAX989EUA+T	$8 ~ \mu M A X-8 ~$	-
MAX989ESA+	8 SO	-
MAX990EKA+T	8 SOT23-8	AAEA
MAX990EUA+T	$8 ~ \mu M A X-8 ~$	-
MAX990ESA+	8 SO	-
MAX993EUD+	14 TSSOP	-
MAX993ESD+	14 SO	-
MAX994EUD+	14 TSSOP	-
MAX994ESD+	14 SO	-

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.

TOP VIEW

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 UCSP	B6+3	21-0097	-
5 SOT23	U5+1	21-0057	90-0174
5 SC70	X5+1	21-0076	90-0188
8 SO	S8+2	21-0041	90-0096
8 SOT23	K8+5	21-0078	90-0176
$8 \mu \mathrm{MAX}$	U8+1	21-0036	90-0092
14 SO	S $14+1$	21-0041	90-0112
14 TSSOP	U14+1	21-0066	90-0113

Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
5	$4 / 12$	Replaced Figure 3, added lead-free compliant packaging info, updated package information, updated Absolute Maximum Ratings, rearranged Pin Description table	$1,2,6,9,10$

[^0]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

