Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

General Description

The MAX913 single and MAX912 dual, high-speed, low-power comparators have differential inputs and complementary TTL outputs. Fast propagation delay (10ns, typ), extremely low supply current, and a wide common-mode input range that includes the negative rail make the MAX912/MAX913 ideal for low-power, high-speed, single +5 V (or $\pm 5 \mathrm{~V}$) applications such as V/F converters or switching regulators.
The MAX912/MAX913 outputs remain stable through the linear region. This feature eliminates output instability common to high-speed comparators when driven with a slow-moving input signal.
The MAX912/MAX913 can be powered from a single +5 V supply or $\mathrm{a} \pm 5 \mathrm{~V}$ split supply. The MAX913 is an improved plug-in replacement for the LT1016. It provides significantly wider input voltage range and equivalent speed at a fraction of the power. The MAX912 dual comparator has equal performance to the MAX913 and includes independent latch controls.

Applications
Zero-Crossing Detectors
Ethernet Line Receivers
Switching Regulators
High-Speed Sampling Circuits
High-Speed Triggers
Extended Range V/F Converters
Fast Pulse Width/Height Discriminators

Features

- Ultra Fast (10ns)
- Single +5 V or Dual $\pm 5 \mathrm{~V}$ Supply Operation
- Input Range Extends Below Negative Supply
- Low Power: 6mA (+5V) Per Comparator
- No Minimum Input Signal Slew-Rate Requirement
- No Power-Supply Current Spiking
- Stable in the Linear Region
- Inputs Can Exceed Either Supply
- Low Offset Voltage: 0.8mV
- Now Available in a Small μ MAX Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX912CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX912CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX912EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX912ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX913CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX913CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX913EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX913ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX913EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 ~ \mu \mathrm{MAX}$

Pin Configurations
TOP VIEW

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

ABSOLUTE MAXIMUM RATINGS
Positive Supply Voltage ..+7V
Negative Supply Voltage ...7V
V+ to V- ..+13V
Differential Input Voltage ...15V
Input Voltage (Referred to V-)-0.3V to +14 V
Latch Pin VoltageEqual to Supplies
Continuous Output Current... $\pm 20 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ...727m

8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 471 mW 8-Pin μ MAX (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 362 mW 16-Pin Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 842 mW 16-Pin Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .696 mW Operating Temperature Ranges:
MAX91_C_ _ ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX91_E-_... $-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Q}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{LE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 2)	Vos	$R \mathrm{R} \leq 100 \Omega$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	2	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN TO }} \mathrm{T}_{\text {MAX }}$			3	
Offset Drift	TCVOS				2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current (Note 2)	Ios	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.3	0.5	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ TO $\mathrm{T}_{\text {MAX }}$				1	
Input Bias Current	IB	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			2	5	$\mu \mathrm{A}$
		C, E temperature ranges				8	
Input Voltage Range	$\mathrm{V}_{\text {CM }}$	C, E temperature ranges		-5.2		+3.5	V
		Single +5V	C, E temperature ranges	-0.2		+3.5	
Common-Mode Rejection Ratio	CMRR	$-5.0 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+3.5 \mathrm{~V}$		80	110		dB
Power-Supply Rejection Ratio	PSRR	Positive supply; $4.5 \mathrm{~V} \leq \mathrm{V}+\leq 5.5 \mathrm{~V}$		60	85		dB
		Negative supply; $-2 \mathrm{~V} \geq \mathrm{V}$ - $\geq-7 \mathrm{~V}$		80	100		
Small-Signal Voltage Gain	Av	$1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Q}} \leq 2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1500	3500		V/V
Output Voltage	VOH	$\mathrm{V}+\geq 4.5 \mathrm{~V}$	IOUT $=1 \mathrm{~mA}$	2.7	3.4		V
			IOUT $=10 \mathrm{~mA}$	2.4	3.0		
	VoL	ISINK $=4 \mathrm{~mA}$			0.3	0.5	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{IS}_{\text {S }} \mathrm{NK}=10 \mathrm{~mA}$			0.4		
Positive Supply Current Per Comparator (Note 3)	I+	C, E temperature ranges			6	10	mA
Negative Supply Current Per Comparator (Note 3)	I-				1	2	mA
Latch-Pin High Input Voltage	V_{IH}			2.0			V
Latch-Pin Low Input Voltage	$\mathrm{V}_{\text {IL }}$					0.8	V
Latch-Pin Current	IIL	$V_{L E}=0 \mathrm{~V}$			-1	-20	$\mu \mathrm{A}$

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Q}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{LE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Propagation Delay (Note 4)	tPD+, tPD-	$\begin{aligned} & \Delta V_{I N}=100 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{OD}}=5 \mathrm{mV} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			10	14	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ TO $\mathrm{T}_{\text {MAX }}$				16	
		$\begin{aligned} & \Delta V_{I N}=100 \mathrm{mV}, \\ & V_{O D}=20 \mathrm{mV} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			9	12	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ TO $\mathrm{T}_{\text {MAX }}$				15	
Differential Propagation Delay (Note 4)	Δ tpD	$\begin{aligned} & \Delta V_{I N}=100 \mathrm{mV}, \\ & V_{O D}=5 \mathrm{mV} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	MAX913		2	4	ns
				MAX912		3	5	
Channel-to-Channel Propagation Delay (Note 4)		$\begin{aligned} & \Delta V_{I N}=100 \mathrm{mV}, \\ & V_{O D}=5 \mathrm{mV} \\ & \text { (MAX912 only) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			500		ps
Latch Setup Time (Note 5)	tsu				2	0		ns
Latch Hold Time (Note 5)	th				5	2		ns
Latch Propagation Delay (Note 6)	tLPD					7		ns

Note 1: All specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Specification limits over temperature $\left(\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to TMAX) are guaranteed by design.
Note 2: Input Offset Voltage (VOS) is defined as the average of the two input offset voltages, measured by forcing first one output, then the other to 1.4 V . Input Offset Current (los) is defined the same way.
Note 3: Supply currents are measured with V_{Q} driven to both V_{OH} and V_{OL} (not 1.4V).
Note 4: Propagation Delay (tpD) and Differential Propagation Delay ($\Delta \mathrm{tPD}$) cannot be measured in automatic handling equipment with low input overdrive values. Characterization and correlation tests have shown that tpD and Δ tpd limits can be guaranteed by design. Electrical Characteristic DC tests are performed to guarantee that all internal bias conditions are correct. For low overdrive conditions, VOS is added to overdrive. Differential Propagation Delay is defined as \triangle tPD $=$ tPD+ - tPD-.
Note 5: Input latch setup time (t SU) is the interval in which the input signal must be stable prior to asserting the latch signal. The hold time (th) is the interval after the latch is asserted in which the input signal must be stable. These parameters are guaranteed by design.
Note 6: Latch Propagation Delay (tLPD) is the delay time for the output to respond when the latch-enable pin is deasserted (see Timing Diagram).

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LE}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

Typical Operating Characteristics (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LE}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

POSITIVE-TO-NEGATIVE PROPAGATION DELAY

5ns/div

NEGATIVE-TO-POSITIVE PROPAGATION DELAY

5ns/div

MAX912/MAX913 RESPONSE TO 50MHZ ($\pm 10 \mathrm{mV}$ P-p) SINE WAVE

10ns/div

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

PIN	NAME	FUNCTION
1	QA	Comparator A TTL Output
2	$\overline{\text { Q }}$	Comparator A Complementary TTL Output
3, 14	GND	Logic Ground. Connect both GND pins to ground.
4	LEA	Comparator A Latch Enable. QA and $\bar{Q} A$ are latched when LEA is TTL high or floating. Comparator A latch is transparent when LEA is low.
5, 12	N.C.	No Connection. Not internally connected.
6	V-	Negative Power Supply. -5V for dual supplies (bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor) or GND for a single supply.
7	INA-	Comparator A Inverting Input
8	INA+	Comparator A Noninverting Input
9	INB+	Comparator B Noninverting Input
10	INB-	Comparator B Inverting Input
11	V+	Positive Power Supply, +5 V . Bypass to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
13	LEB	Comparator B Latch Enable. QB and $\bar{Q} B$ are latched when LEB is TTL high or floating. Comparator B latch is transparent when LEB is low.
15	$\overline{\text { Q }}$	Comparator B Complementary TTL Output
16	QB	Comparator B TTL Output

MAX913 Pin Description

PIN	NAME	FUNCTION
1	$\mathrm{~V}+$	Positive Power Supply. Bypass to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
2	$\mathrm{IN}+$	Noninverting Input
3	$\mathrm{IN}-$	Inverting Input
4	$\mathrm{~V}-$	Negative Power Supply. -5V for dual supplies (bypass to GND with a 0.1 $\mu \mathrm{F}$ capacitor) or GND for a single supply.
5	LE	Latch Enable. Q and $\overline{\mathrm{Q}}$ are latched when LE is TTL high or floating. The comparator latch is transparent when LE is low.
6	GND	Logic Ground
7	Q	TTL Output
8	$\overline{\mathrm{Q}}$	Complementary TTL Output

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

Detailed Description

The MAX912 (dual) and MAX913 (single) high-speed comparators have a unique design that prevents oscillation when the comparator is in its linear region. No minimum input slew rate is required.
Many high-speed comparators oscillate in the linear region, as shown in the Typical Operating Characteristics' industry-standard 686 response graph. One way to overcome this oscillation is to sample the output after it has passed through the unstable region. Another practical solution is to add hysteresis. Either solution results in a loss of resolution and bandwidth.
Because the MAX912/MAX913 do not need hysteresis, they offer high resolution to all signals-including lowfrequency signals.
The MAX912/MAX913 provide a TTL-compatible latch function that holds the comparator output state (Figure 1). As long as Latch Enable (LE) is high or floating, the input signal has no effect on the output state. With LE low, the outputs are controlled by the input differential voltage and the latch is transparent.

Input Amplifier

A comparator can be thought of as having two sections; an input amplifier and a logic interface. The MAX912/MAX913's input amplifier is fully differential with input offset voltage trimmed to below 2.0 mV at
$+25^{\circ} \mathrm{C}$. Input common-mode range extends from 200 mV below the negative supply rail to 1.5 V below the positive power supply. The total common-mode range is 8.7 V when operating from $\pm 5 \mathrm{VDC}$ supplies.
The MAX912/MAX913's amplifier has no built-in hysteresis. For highest accuracy, do not add hysteresis. Figure 2 shows how hysteresis degrades resolution.

Resolution

A comparator's ability to resolve small signal differ-ences-its resolution-is affected by various factors. As with most amplifiers, the most significant factors are the input offset voltage (V OS) and the common-mode and power-supply rejection ratios (CMRR, PSRR). If source impedance is high, input offset current can be significant. If source impedance is unbalanced, the input bias current can introduce another error.
For high-speed comparators, an additional factor in resolution is the comparator's stability in its linear region. Many high-speed comparators are useless in their linear region because they oscillate. This makes the differential input voltage region around OV unusable, as does a high Vos. Hysteresis does not cure the problem, but acts to keep the input away from its linear range (Figure 2).
The MAX912/MAX913 do not oscillate in the linear region, which greatly enhances the comparator's resolution.

Figure 1. Timing Diagram

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

Applications Information
 Power Supplies and Bypassing

The MAX912/MAX913 are tested with ± 5 V power supplies that provide an input common-mode range (VCM) of $8.7 \mathrm{~V}(-5.2 \mathrm{~V}$ to $+3.5 \mathrm{~V})$. Operation from a single +5 V supply provides a common-mode input range of 3.7 V $(-0.2 \mathrm{~V}$ to +3.5$)$. Connect V - to GND for single-supply operation. The MAX912/MAX913 will operate from a minimum single-supply voltage of +4.5 V .
The $V+$ supply provides power to both the analog input stage and digital output circuits, whereas the V- supply only powers the analog section. Bypass $V+$ and V - to ground with $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$ ceramic capacitors in parallel with $10 \mu \mathrm{~F}$ or greater tantalum capacitors. Connect the ceramic capacitors very close to the MAX912/MAX913's supply pins, keeping leads short to minimize lead inductance. For particularly noisy applications, use ferrite beads on the power-supply lines.

Board Layout
As with all high-speed components, careful attention to layout is essential for best performance.

1) Use a printed circuit board with an unbroken ground plane.
2) Pay close attention to the bandwidth of bypass components and keep leads short.
3) Avoid sockets; solder the comparator and other components directly to the board to minimize unwanted parasitic inductance and capacitance.

Input Slew Rate

The MAX912/MAX913 design eliminates the input slewrate requirement imposed on many standard comparators. As long as LE is high after the maximum propagation delay and the input is greater than the comparator's total DC error, the output will be valid without oscillations.

Maximum Clock (LE) and Signal Rate The maximum clock and signal rate is 70 MHz , based on the comparator's rise and fall time with a 5 mV overdrive at $+25^{\circ} \mathrm{C}$ (Figure 1). With a 20 mV overdrive, the maximum propagation delay is 12 ns and the clock signal rate is 85 MHz .

Figure 2. Effect of Hysteresis on Input Resolution

Chip Information

MAX912 TRANSISTOR COUNT: 285
MAX913 TRANSISTOR COUNT: 154
PROCESS: Bipolar

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Single/Dual, Ultra-Fast, Low-Power Precision TTL Comparators

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

