

General Description

The MAX5510/MAX5511 are single, 8-bit, ultra-lowpower, voltage-output, digital-to-analog converters (DACs) offering rail-to-rail buffered voltage outputs. The DACs operate from a 1.8V to 5.5V supply and consume less than 6µA, making them desirable for low-power and low-voltage applications. A shutdown mode reduces overall current, including the reference input current, to just 0.18µA. The MAX5510/MAX5511 use a 3-wire serial interface that is compatible with SPI™, QSPI™, and MICROWIRE™.

At power-up, the MAX5510/MAX5511 outputs are driven to zero scale, providing additional safety for applications that drive valves or for other transducers that must be off during power-up. The zero-scale outputs enable glitch-free power-up.

The MAX5510 accepts an external reference input. The MAX5511 contains an internal reference and provides an external reference output. Both devices have forcesense-configured output buffers.

The MAX5510/MAX5511 are available in a 4mm x 4mm x 0.8mm, 12-pin, thin QFN package and are guaranteed over the extended -40°C to +85°C temperature range.

For 12-bit compatible devices, refer to the MAX5530/ MAX5531 data sheet. For 10-bit compatible devices, refer to the MAX5520/MAX5521 data sheet.

Applications

Portable Battery-Powered Devices

Instrumentation

Automatic Trimming and Calibration in Factory or Field

Programmable Voltage and Current Sources

Industrial Process Control and Remote Industrial Devices

Remote Data Conversion and Monitoring

Chemical Sensor Cell Bias for Gas Monitors

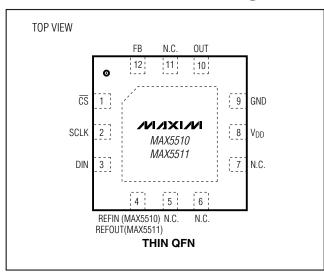
Programmable Liquid Crystal Display (LCD) Bias

Selector Guide

PART	REFERENCE	TOP MARK
MAX5510ETC	External	AACO
MAX5511ETC	Internal	AACP

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

Features


- ♦ Single +1.8V to +5.5V Supply
- ♦ Ultra-Low 6µA Supply Current
- ♦ Shutdown Mode Reduces Supply Current to 0.18µA (max)
- ♦ Small 4mm x 4mm x 0.8mm Thin QFN Package
- ♦ Flexible Force-Sense-Configured Rail-to-Rail **Output Buffers**
- ♦ Internal Reference Sources 8mA of Current (MAX5511)
- ♦ Fast 16MHz 3-Wire SPI-/QSPI-/MICROWIRE-**Compatible Serial Interface**
- **♦ TTL- and CMOS-Compatible Digital Inputs** with Hysteresis
- ♦ Glitch-Free Outputs During Power-Up

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX5510ETC	-40°C to +85°C	12 Thin QFN-EP*	T1244-4
MAX5511ETC	-40°C to +85°C	12 Thin QFN-EP*	T1244-4

*EP = Exposed paddle (internally connected to GND).

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +1.8V \text{ to } +5.5V, \text{ OUT unloaded, } T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC ACCURACY (MAX5510 E	XTERNAL F	REFERENCE)				
Resolution	N		8			Bits
Integral Nonlinearity (Note 1)	INL	$V_{DD} = 5V, V_{REF} = 4.096V$		±0.25	±1	LSB
integral Normineanty (Note 1)	IIVL	$V_{DD} = 1.8V, V_{REF} = 1.024V$		±0.25	±1	LOD
Differential Newlinearity (Nets 1)	DVII	Guaranteed monotonic, VDD = 5V, VREF = 4.096V		±0.2	±1	LSB
Differential Nonlinearity (Note 1)	DNL	Guaranteed monotonic, V _{DD} = 1.8V, V _{REF} = 1.024V		±0.2	±1	LOB
Offset Error (Note 2)	Vac	V _{DD} = 5V, V _{REF} = 4.096V		±1	±20	m\/
Offset Error (Note 2)	Vos	$V_{DD} = 1.8V, V_{REF} = 1.024V$		±1	±20	mV
Offset-Error Temperature Drift				±2		μV/°C
Coin Frank (Nictor 2)	GE	$V_{DD} = 5V, V_{REF} = 4.096V$		±0.5	±1	LSB
Gain Error (Note 3)	GE	$V_{DD} = 1.8V, V_{REF} = 1.024V$		±0.5	±1	LSB
Gain-Error Temperature Coefficient				±4		ppm/°C
Power-Supply Rejection Ratio	PSRR	1.8V ≤ V _{DD} ≤ 5.5V		85		dB
STATIC ACCURACY (MAX5511 I	NTERNAL R	EFERENCE)				
Resolution	N		8			Bits
Integral Nonlinearity (Note 1)	INL	V _{DD} = 5V, V _{REF} = 3.9V		±0.25	±1	LSB
integral Northineanty (Note 1)	IINL	$V_{DD} = 1.8V, V_{REF} = 1.2V$		±0.25	±1	LSD
Differential Newlinearity (Nester 1)	DVII	Guaranteed monotonic, V _{DD} = 5V, V _{REF} = 3.9V		±0.2	±1	LOD
Differential Nonlinearity (Note 1)	DNL	Guaranteed monotonic, VDD = 1.8V, VREF = 1.2V		±0.2	±1	LSB
0(() = (N) 0)		V _{DD} = 5V, V _{REF} = 3.9V		±1	±20	
Offset Error (Note 2)	Vos	V _{DD} = 1.8V, V _{REF} = 1.2V		±1	±20	mV
Offset-Error Temperature Drift				±2		μV/°C
Coin From (Nictor 2)	GE	V _{DD} = 5V, V _{REF} = 3.9V		±0.5	±1	1.00
Gain Error (Note 3)	GE	V _{DD} = 1.8V, V _{REF} = 1.2V		±0.5	±1	LSB
Gain-Error Temperature Coefficient				±4		ppm/°C

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +1.8V \text{ to } +5.5V, \text{ OUT unloaded}, \text{ T}_{A} = \text{T}_{MIN} \text{ to T}_{MAX}, \text{ unless otherwise noted}. \text{ Typical values are at T}_{A} = +25^{\circ}\text{C.})$

PARAMETER SYM		CONDITIONS	MIN	TYP	MAX	UNITS
Power-Supply Rejection Ratio	PSRR	1.8V ≤ V _{DD} ≤ 5.5V		85		dB
REFERENCE INPUT (MAX5510)						
Reference-Input Voltage Range VREFIN			0		V _{DD}	V
Defenses a legacit legacit legacit	-	Normal operation	4.1			МΩ
Reference-Input Impedance	RREFIN	In shutdown		2.5		GΩ
REFERENCE OUTPUT (MAX5511)					
		No external load, V _{DD} = 1.8V	1.197	1.214	1.231	
Initial Appurpay	No external load, V _{DD} = 2.5V		1.913	1.940	1.967	V
Initial Accuracy	VREFOUT	No external load, V _{DD} = 3V	2.391	2.425	2.459	V
		No external load, V _{DD} = 5V	3.828	3.885	3.941	
Output-Voltage Temperature Coefficient	VTEMPCO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Note 4)}$		12	30	ppm/°C
Line Regulation		VREFOUT < VDD - 200mV (Note 5)		2	200	μV/V
		$0 \le I_{REFOUT} \le 1$ mA, sourcing, $V_{DD} = 1.8$ V, $V_{REF} = 1.2$ V		0.3	2	
Load Regulation		$0 \le I_{REFOUT} \le 8mA$, sourcing, $V_{DD} = 5V$, $V_{REF} = 3.9V$		0.3	2	μV/μΑ
		-150µA ≤ I _{REFOUT} ≤ 0, sinking		0.2		
		0.1Hz to 10Hz, V _{REFOUT} = 3.9V		150		
Contract Nation Valtering		10Hz to 10kHz, V _{REFOUT} = 3.9V		600		/
Output Noise Voltage		0.1Hz to 10Hz, V _{REFOUT} = 1.2V		50		μV _{P-P}
		10Hz to 10kHz, V _{REFOUT} = 1.2V		450		
Chart Circuit Current (Nata C)		V _{DD} = 5V		30		A
Short-Circuit Current (Note 6)		$V_{DD} = 1.8V$		14		mA mA
Capacitive Load Stability Range		(Note 7)		0 to 10		nF
Thermal Hysteresis		(Note 8)		200		ppm
Reference Power-Up Time (from		REFOUT unloaded, V _{DD} = 5V		5.4		me
Shutdown)		REFOUT unloaded, V _{DD} = 1.8V		4.4		ms
Long-Term Stability				200		ppm/ 1khrs
DAC OUTPUT (OUT)						
Capacitive Driving Capability	CL			1000		рF
		V _{DD} = 5V, V _{OUT} set to full scale, OUT shorted to GND, source current			65	
Short Circuit Current (Note S)		V _{DD} = 5V, V _{OUT} set to 0V, OUT shorted to V _{DD} , sink current			65	
Short-Circuit Current (Note 6)		V _{DD} = 1.8V, V _{OUT} set to full scale, OUT shorted to GND, source current			14	mA
		V _{DD} = 1.8V, V _{OUT} set to 0V, OUT shorted to V _{DD} , sink current			14	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +1.8V \text{ to } +5.5V, \text{ OUT unloaded}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}. Typical values are at T_A = +25°C.)$

DAC Power-Up Time	PARAMETER	SYMBOL	СО	CONDITIONS		MIN	TYP	MAX	UNITS	
MAX5510 VDD = 1.8V 3.8 Max5510 VDD = 1.8V 0.4 Max5511 Max5511 VDD = 1.8V 0.4 Max5511 Max5511 Max5511 VDD = 1.8V Max5511 Max5511 Max5511 VDD = 1.8V Max551 Max5510 Max5511 VDD = 1.8V Max5510 Max5511 VDD = 1.8V Max5511			Coming out of shut	down	$V_{DD} = 5V$		3			
Coming out of standby (MAXSS11) VDD = 1.8V (b ≤ 5.V	DAOD II T		Coming out of standby $V_{DD} = 1.8V$			3.8				
FB_ Input Current DGITAL INPUTS (SCLK, DIN, CS) 4.5∨ ≤ VDD ≤ 5.5∨ 2.4 ✓ Input High Voltage VIH 4.5∨ ≤ VDD ≤ 5.5∨ 2.0 ✓ Input Low Voltage VIL 2.7∨ < VDD ≤ 3.6∨	DAC Power-Up Time						0.4		ms	
DIGITAL INPUTS (SCLK, DIN, CS) SCLK, DIN, CS A.5V ≤ VDD ≤ 5.5V C.4 V V A.5V ≤ VDD ≤ 5.5V C.0 V V A.5V ≤ VDD ≤ 5.5V C.0 V V A.5V ≤ VDD ≤ 5.5V C.0 C.0 V V A.5V ≤ VDD ≤ 5.5V C.0 C.0 C.0 C.0 V A.5V ≤ VDD ≤ 5.5V C.0	Output Power-Up Glitch		C _L = 100pF				10		mV	
Input High Voltage	FB_ Input Current						10		рА	
Input High Voltage VIH	DIGITAL INPUTS (SCLK, DIN, C	S)	•							
1.8V ≤ VDD ≤ 2.7V 0.7x VDD			$4.5V \le V_{DD} \le 5.5V$			2.4				
Input Low Voltage VIL 4.5V ≤ VpD ≤ 5.5V 0.8 0.6	Input High Voltage	V _{IH}	2.7V < V _{DD} ≤ 3.6V			2.0			V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$1.8V \le V_{DD} \le 2.7V$			0.7 x V _{DE})			
1.8V ≤ V _{DD} ≤ 2.7V			$4.5V \le V_{DD} \le 5.5V$					0.8		
Input Leakage Current	Input Low Voltage	VIL	$2.7V < V_{DD} \le 3.6V$					0.6	V	
Input Capacitance			$1.8V \le V_{DD} \le 2.7V$				C	0.3 x V _{DD}		
Voltage-Output Slew Rate SR Positive and negative (Note 10) 10 V/ms	Input Leakage Current	I _{IN}	(Note 9)				±0.05	±0.5	μΑ	
Voltage-Output Slew Rate SR Positive and negative (Note 10) 10 V/ms	Input Capacitance	CIN					10		рF	
Voltage-Output Settling Time 0.1 to 0.9 of full scale to within 0.5 LSB (Note 10) 660 μs Output Noise Voltage Output Noise Voltage VDD 10Hz to 10Hz VDD 55 WP-P POWER REQUIREMENTS Supply Voltage Range VDD 1.8 5.5 V MAX5510 VDD = 5V 2.6 4 VDD = 3V 2.6 4 MAX5511 VDD = 5V 2.6 4 μΑ Standby Supply Current IDDSD (Note 9) VDD = 5V 3.3 4.0 μΑ Standby Supply Current IDDSD (Note 9) VDD = 3V 2.8 3.4 μΑ	DYNAMIC PERFORMANCE									
Voltage-Output Settling Time (Note 10) (Note 10	Voltage-Output Slew Rate	SR	Positive and negati	ve (Note 10))		10		V/ms	
Output Noise Voltage VDD = 1.8V 55 μVP-P POWER REQUIREMENTS Supply Voltage Range VDD 1.8 5.5 V Supply Current (Note 9) MAX5510 VDD = 5V 2.6 4 VDD = 3V 2.6 4 VDD = 1.8V 3.6 5 VDD = 5V 5.3 6.5 VDD = 5V 5.3 6.5 VDD = 3V 4.8 6.0 VDD = 1.8V 5.4 7.0 Standby Supply Current IDDSD (Note 9) VDD = 5V 3.3 4.0 VDD = 3V 2.8 3.4 µA	Voltage-Output Settling Time			ale to within	0.5 LSB		660		μs	
Output Noise Voltage VDD = 1.8V 55 μVP-P POWER REQUIREMENTS Supply Voltage Range VDD 1.8 5.5 V Supply Current (Note 9) MAX5510 VDD = 5V 2.6 4 VDD = 3V 2.6 4 VDD = 1.8V 3.6 5 VDD = 5V 5.3 6.5 VDD = 5V 5.3 6.5 VDD = 3V 4.8 6.0 VDD = 1.8V 5.4 7.0 Standby Supply Current IDDSD (Note 9) VDD = 5V 3.3 4.0 VDD = 3V 2.8 3.4 µA				V _{DD} =	$V_{DD} = 5V$		80			
10Hz to 10kHz VDD = 5V 620			0.1Hz to 10Hz				55			
Vode 1.8V 476 4	Output Noise Voltage					620			µV _{P-P}	
POWER REQUIREMENTS Supply Voltage Range V _{DD} 1.8 5.5 V Supply Voltage Range V _{DD} 5V 2.6 4 V _{DD} = 3V 2.6 4 V _{DD} = 1.8V 3.6 5 V _{DD} = 5V 5.3 6.5 V _{DD} = 3V 4.8 6.0 V _{DD} = 1.8V 5.4 7.0 Standby Supply Current I _{DDSD} (Note 9) V _{DD} = 5V 3.3 4.0 V _{DD} = 3V 2.8 3.4 µA V _{DD} = 1.8V 2.4 3.0			10Hz to 10kHz				476			
Supply Current (Note 9) HDD MAX5510 VDD = 5V VDD = 3V VDD = 1.8V 3.6 5 VDD = 5V VDD = 5V VDD = 5V VDD = 5V VDD = 1.8V VDD = 5V VDD = 1.8V VDD = 1.8V VDD = 5V VDD = 1.8V VD	POWER REQUIREMENTS	1	1	l .		I				
Supply Current (Note 9) $I_{DD} = I_{DD} = I_{D$	Supply Voltage Range	V_{DD}				1.8		5.5	V	
Supply Current (Note 9) $I_{DD} = I_{DD} = I_{D$				V _{DD} =	5V		2.6	4		
Supply Current (Note 9) VDD = 1.8V 3.6 5 VDD = 5V 5.3 6.5 VDD = 3V 4.8 6.0 VDD = 1.8V 5.4 7.0 VDD = 5V 3.3 4.0 VDD = 5V 3.3 4.0 VDD = 3V 2.8 3.4 μΑ VDD = 1.8V 2.4 3.0			MAX5510				2.6	4		
Supply Current (Note 9) MAX5511 VDD = 5V VDD = 3V VDD = 1.8V VDD = 1.8V Standby Supply Current IDDSD (Note 9) VDD = 5V VDD = 5V VDD = 3V VDD = 3V VDD = 3V VDD = 3V VDD = 1.8V VDD = 1.8V				V _{DD} =	1.8V		3.6	5		
$V_{DD} = 1.8V \qquad \qquad 5.4 \qquad 7.0 \\ V_{DD} = 5V \qquad \qquad 3.3 \qquad 4.0 \\ V_{DD} = 3V \qquad \qquad 2.8 \qquad 3.4 \\ V_{DD} = 1.8V \qquad \qquad 2.4 \qquad 3.0 \\ \end{array}$ Standby Supply Current	Supply Current (Note 9)	IDD					5.3	6.5	μΑ	
$V_{DD} = 1.8V \qquad \qquad 5.4 \qquad 7.0 \\ V_{DD} = 5V \qquad \qquad 3.3 \qquad 4.0 \\ V_{DD} = 3V \qquad \qquad 2.8 \qquad 3.4 \\ V_{DD} = 1.8V \qquad \qquad 2.4 \qquad 3.0 \\ \end{array}$ Standby Supply Current			MAX5511	V _{DD} =	3V		4.8	6.0		
Standby Supply Current I_{DDSD} (Note 9) $V_{DD} = 3V$ 2.8 3.4 μ A $V_{DD} = 1.8V$ 2.4 3.0				V _{DD} =	1.8V		5.4	7.0		
Standby Supply Current I_{DDSD} (Note 9) $V_{DD} = 3V$ 2.8 3.4 μ A $V_{DD} = 1.8V$ 2.4 3.0					$V_{DD} = 5V$		3.3	4.0		
V _{DD} = 1.8V 2.4 3.0	Standby Supply Current	IDDSD	(Note 9)				2.8	3.4	μΑ	
Shutdown Supply Current IDDPD (Note 9) 0.05 0.18 μA							2.4	3.0		
	Shutdown Supply Current	IDDPD	(Note 9)	•			0.05	0.18	μΑ	

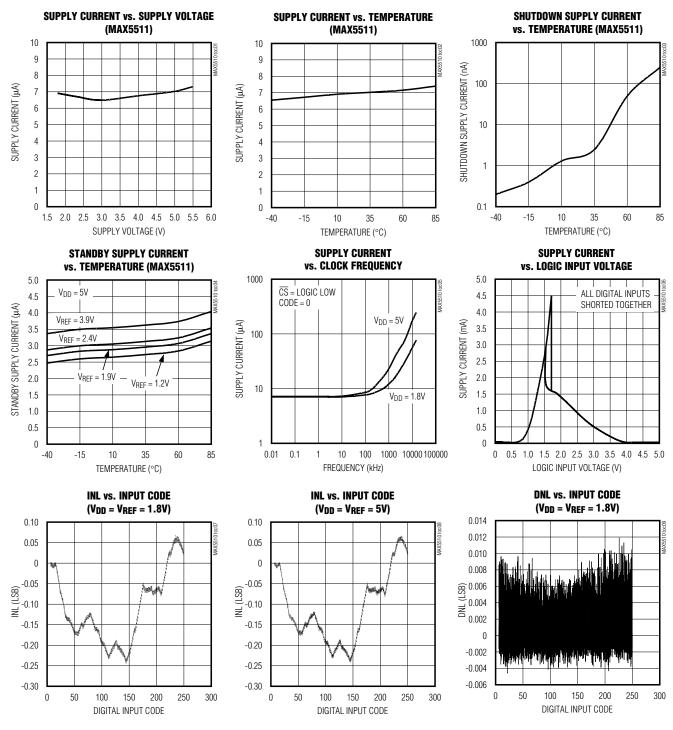
__ /N/XI/M

TIMING CHARACTERISTICS

 $(V_{DD} = +4.5V \text{ to } +5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

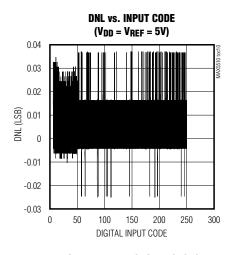
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS				
TIMING CHARACTERISTICS (V _{DD} = 4.5V TO 5.5V)										
Serial Clock Frequency	fsclk		0		16.7	MHz				
DIN to SCLK Rise Setup Time	t _{DS}		15			ns				
DIN to SCLK Rise Hold Time	tDH		0			ns				
SCLK Pulse-Width High	tсн		24			ns				
SCLK Pulse-Width Low	t _{CL}		24			ns				
CS Pulse-Width High	tcsw		100			ns				
SCLK Rise to CS Rise Hold Time	tcsh		0			ns				
CS Fall to SCLK Rise Setup Time	toss		20			ns				
SCLK Fall to CS Fall Setup	tcso		0			ns				
CS Rise to SCK Rise Hold Time	tcs1		20			ns				

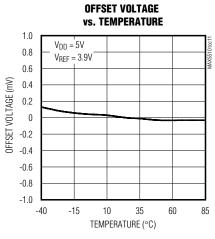
TIMING CHARACTERISTICS


 $(V_{DD} = +1.8V \text{ to } +5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

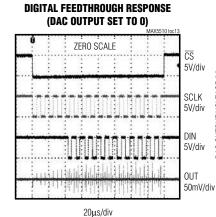
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS (VDI) = 1.8V TO 5	.5V)				
Serial Clock Frequency	fsclk		0		10	MHz
DIN to SCLK Rise Setup Time	t _{DS}		24			ns
DIN to SCLK Rise Hold Time	tDH		0			ns
SCLK Pulse-Width High	t _{CH}		40			ns
SCLK Pulse-Width Low	tCL		40			ns
CS Pulse-Width High	tcsw		150			ns
SCLK Rise to CS Rise Hold Time	tcsh		0			ns
CS Fall to SCLK Rise Setup Time	tcss		30			ns
SCLK Fall to CS Fall Setup	tcso		0			ns
CS Rise to SCK Rise Hold Time	tcs1		30			ns

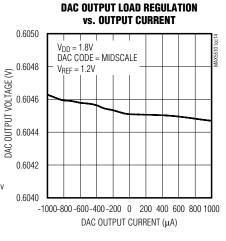
- Note 1: Linearity is tested within codes 6 to 255.
- Note 2: Offset is tested at code 6.
- Note 3: Gain is tested at code 250. FB is connected to OUT.
- Note 4: Guaranteed by design. Not production tested.
- Note 5: V_{DD} must be a minimum of 1.8V.
- Note 6: Outputs can be shorted to V_{DD} or GND indefinitely, provided that the package power dissipation is not exceeded.
- Note 7: Optimal noise performance is at 2nF load capacitance.
- Note 8: Thermal hysteresis is defined as the change in the initial +25°C output voltage after cycling the device from T_{MAX} to T_{MIN}.
- Note 9: All digital inputs at VDD or GND.
- Note 10: Load = $10k\Omega$ in parallel with 100pF, $V_{DD} = 5V$, $V_{REF} = 4.096V$ (MAX5510) or $V_{REF} = 3.9V$ (MAX5511).

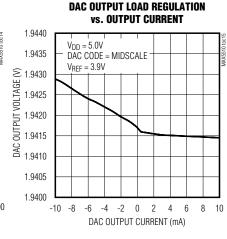

Typical Operating Characteristics

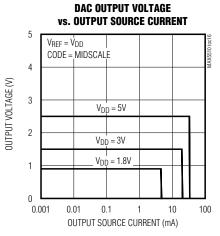

 $(V_{DD} = 5.0V, V_{REF} = 4.096V \text{ (MAX5510) or } V_{REF} = 3.9V \text{ (MAX5511)}, T_{A} = +25^{\circ}C, unless otherwise noted.)$

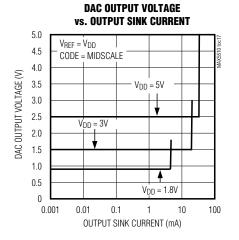


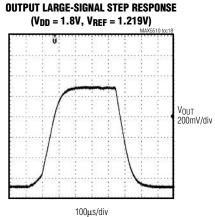

Typical Operating Characteristics (continued)

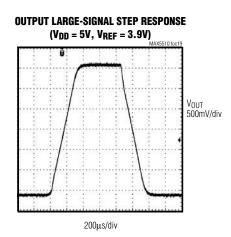

 $(V_{DD} = 5.0V, V_{REF} = 4.096V \text{ (MAX5510) or } V_{REF} = 3.9V \text{ (MAX5511)}, T_{A} = +25^{\circ}\text{C}, unless otherwise noted.)$

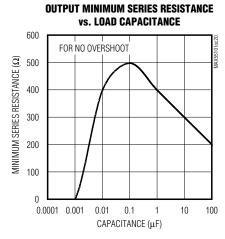


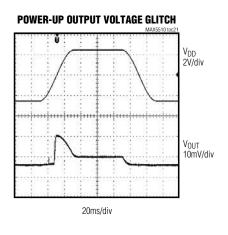


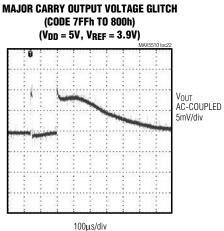


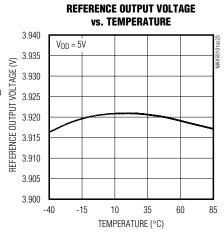


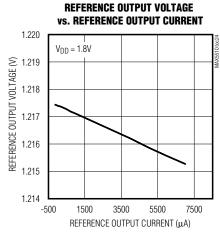


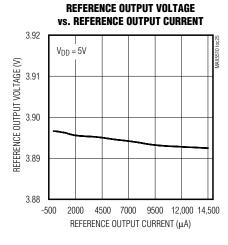


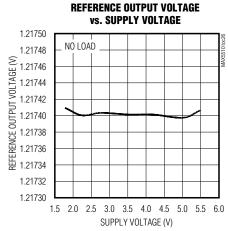


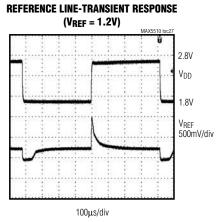

Typical Operating Characteristics (continued)

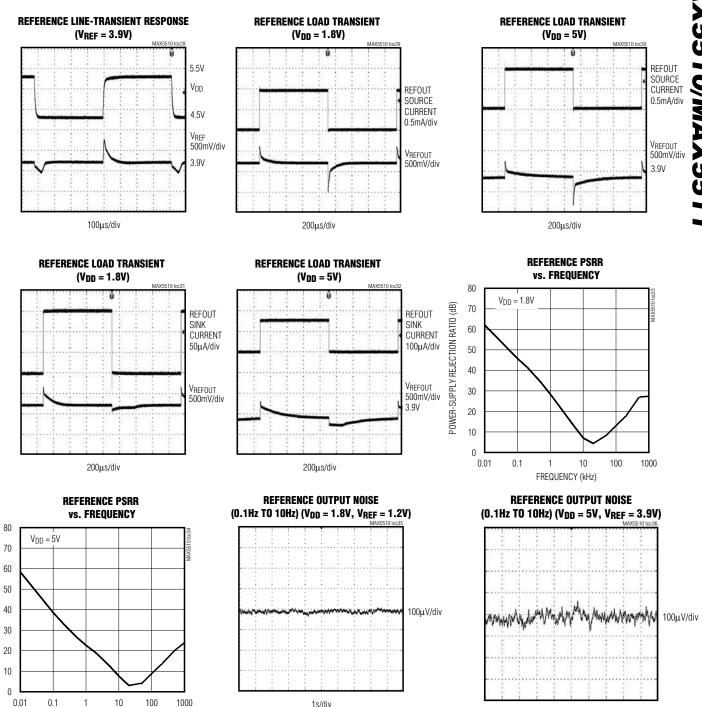

 $(V_{DD} = 5.0V, V_{REF} = 4.096V (MAX5510) \text{ or } V_{REF} = 3.9V (MAX5511), T_A = +25^{\circ}C, \text{ unless otherwise noted.})$









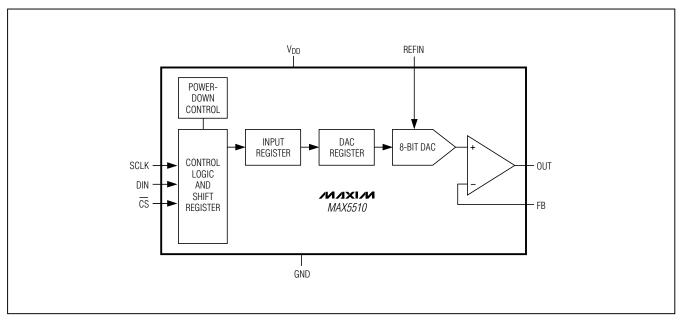


Typical Operating Characteristics (continued)

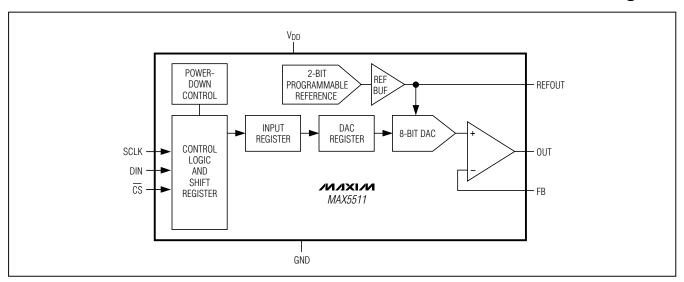
(VDD = 5.0V, VBFF = 4.096V (MAX5510) or VBFF = 3.9V (MAX5511), TA = +25°C, unless otherwise noted.)

1s/div

FREQUENCY (kHz)


POWER-SUPPLY REJECTION RATIO (dB)

1s/div


Pin Description

Р	PIN		FUNCTION
MAX5510	MAX5511	NAME	FUNCTION
1	1	CS	Active-Low Digital-Input Chip Select
2	2	SCLK	Serial-Interface Clock
3	3	DIN	Serial-Interface Data Input
4	_	REFIN	Reference Input
_	4	REFOUT	Reference Output
5, 6, 7, 11	5, 6, 7, 11	N.C.	No Connection. Leave N.C. inputs unconnected (floating), or connect to GND.
8	8	V _{DD}	Power Input. Connect V _{DD} to a 1.8V to 5.5V power supply. Bypass V _{DD} to GND with a 0.1µF capacitor.
9	9	GND	Ground
10	10	OUT	Analog Voltage Output
12	12	FB	Feedback Input
EP	EP	Exposed Paddle	Exposed Paddle. Connect EP to GND.

MAX5510 Functional Diagram

MAX5511 Functional Diagram

Detailed Description

The MAX5510/MAX5511 single, 8-bit, ultra-low-power, voltage-output DACs offer Rail-to-Rail buffered voltage outputs. The DACs operate from a 1.8V to 5.5V supply and require only 6µA (max) supply current. These devices feature a shutdown mode that reduces overall current, including the reference input current, to just 0.18µA. The MAX5511 includes an internal reference that saves additional board space and can source up to 8mA, making it functional as a system reference. The 16MHz, 3-wire serial interface is compatible with SPI, QSPI, and MICROWIRE protocols. When VDD is applied, all DAC outputs are driven to zero scale with virtually no output glitch. The MAX5510/MAX5511 output buffers are configured in force sense allowing users to externally set voltage gains on the output (an outputamplifier inverting input is available). These devices come in a 4mm x 4mm thin QFN package.

Digital Interface

The MAX5510/MAX5511 use a 3-wire serial interface compatible with SPI, QSPI, and MICROWIRE protocols (Figures 1 and 2).

The MAX5510/MAX5511 include a single, 16-bit, input shift register. Data loads into the shift register through the serial interface. \overline{CS} must remain low until all 16 bits are clocked in. Data loads MSB first, D9–D0. The 16 bits consist of 4 control bits (C3–C0), 8 data bits (D7–D0), and 4 sub-bits. (see Table 1). D7–D0 are the DAC data bits and S3–S0 are the sub-bits. The sub-bits must be set to zero for proper operation. The control bits C3–C0 control the MAX5510/MAX5511, as outlined in Table 2.

Each DAC channel includes two registers: an input register and a DAC register. The input register holds input data. The DAC register contains the data updated to the DAC output.

The double-buffered register configuration allows any of the following:

- Loading the input registers without updating the DAC registers
- Updating the DAC registers from the input registers
- Updating all the input and DAC registers simultaneously

Table 1. Serial Write Data Format

	CON	ΓROL			DATA BITS										
MSB											LSB				
C3	C2	C1	C0	D7	D6	D5	D4	D3	D2	D1	D0	S3	S2	S1	S0

Sub-bits S3—S0 must be set to zero for proper operation.

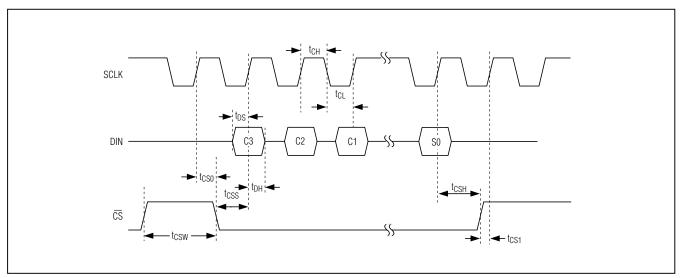


Figure 1. Timing Diagram



Figure 2. Register Loading Diagram

Table 2. Serial-Interface Programming Commands

	CONTR	OL BITS	3	INPUT DATA	SUB-BITS	FUNCTION
СЗ	C2	C1	C0	D7-D0	S3-S0	FUNCTION
0	0	0	0	XXXXXXXX	0000	No operation; command is ignored.
0	0	0	1	8-bit data	0000	Load input register from shift register; DAC register unchanged; DAC output unchanged.
0	0	1	0	_	_	Command reserved; do not use.
0	0	1	1	_	_	Command reserved; do not use.
0	1	0	0	_	_	Command reserved; do not use.
0	1	0	1	_	_	Command reserved; do not use.
0	1	1	0	_	_	Command reserved; do not use.
0	1	1	1	_	_	Command reserved; do not use.
1	0	0	0	XXXX XXXX	0000	Load DAC register from input register; DAC output updated; MAX5510 enters normal operation if in shutdown; MAX5511 enters normal operation if in standby or shutdown.
1	0	0	1	8-bit data	0000	Load input register and DAC register from shift register; DAC output updated; MAX5510 enters normal operation if in shutdown; MAX5511 enters normal operation if in standby or shutdown.
1	0	1	0	_	_	Command reserved; do not use.
1	0	1	1	_	_	Command reserved; do not use.
1	1	0	0	D7, D6, XXXXXX	0000	MAX5510 enters shutdown; MAX5511 enters standby*. For the MAX5511, D7 and D6 configure the internal reference voltage (Table 3).
1	1	0	1	D7, D6, XXXXXX	0000	MAX5510/MAX5511 enter normal operation; DAC output reflects existing contents of DAC register. For the MAX5511, D7 and D6 configure the internal reference voltage (Table 3).
1	1	1	0	D7, D6, XXXXXX	0000	MAX5510/MAX5511 enter shutdown; DAC output set to high impedance. For the MAX5511, D7 and D6 configure the internal reference voltage (Table 3).
1	1	1	1	8-bit data	0000	Load input register and DAC register from shift register; DAC output updated; MAX5510 enters normal operation if in shutdown; MAX5511 enters normal operation if in standby or shutdown.

X = Don't care.

^{*}Standby mode can be entered from normal operation only. It is not possible to enter standby mode from shutdown.

Power Modes

The MAX5510/MAX5511 feature two power modes to conserve power during idle periods. In normal operation, the device is fully operational. In shutdown mode, the device is completely powered down, including the internal voltage reference in the MAX5511. The MAX5511 also offers a standby mode where all circuitry is powered down except the internal voltage reference. Standby mode keeps the reference powered up while the remaining circuitry is shut down, allowing it to be used as a system reference. Standby mode also helps reduce the wake-up delay by not requiring the reference to power up when returning to normal operation.

Shutdown Mode

The MAX5510/MAX5511 feature a software-programmable shutdown mode that reduces the typical supply current and the reference input current to 0.18µA (max). Writing an input control word with control bits C[3:0] = 1110 places the device in shutdown mode (Table 2). In shutdown, the MAX5510 reference input and DAC output buffers go high impedance. Placing the MAX5511 into shutdown turns off the internal reference, and the DAC output buffers go high impedance. The serial interface remains active for all devices.

Table 2 shows several commands that bring the MAX5510/MAX5511 back to normal operation. The power-up time from shutdown is required before the DAC outputs are valid.

Note: For the MAX5511, standby mode cannot be entered directly from shutdown mode. The device must be brought into normal operation before entering standby mode.

Standby Mode (MAX5511 Only)

The MAX5511 features a software-programmable standby mode that reduces the typical supply current to 6 μ A. Standby mode powers down all circuitry except the internal voltage reference. Place the device in standby mode by writing an input control word with control bits C[3:0] = 1100 (Table 2). The internal reference and serial interface remain active while the DAC output buffers go high impedance. If the MAX5511 is coming out of standby, the power-up time from standby is required before the DAC outputs are valid.

For the MAX5511, standby mode cannot be entered

directly from shutdown mode. The device must be brought into normal operation before entering standby mode. To enter standby from shutdown, issue the command to return to normal operation, followed immediately by the command to go into standby.

Table 2 shows several commands that bring the MAX5511 back to normal operation. When transitioning from standby mode to normal operation, only the DAC power-up time is required before the DAC outputs are valid.

Reference Input

The MAX5510 accepts a reference with a voltage range extending from 0 to V_{DD} . The output voltage (V_{OUT}) is represented by a digitally programmable voltage source as:

$$V_{OUT} = (V_{REF} \times N / 256) \times gain$$

where N is the numeric value of the DAC's binary input code (0 to 255), VREF is the reference voltage and gain is the externally set voltage gain for the MAX5510/MAX5511.

In shutdown mode, the reference input enters a high-impedance state with an input impedance of $2.5G\Omega$ (typ).

Reference Output

The MAX5511 internal voltage reference is software configurable to one of four voltages. Upon power-up, the default reference voltage is 1.214V. Configure the reference voltage using the D6 and D7 data bits (Table 3) when the control bits are as follows: C[3:0] = 1100, 1101, or 1110 (Table 2). VDD must be kept at a minimum of 200mV above VREF for proper operation.

Table 3. Reference Output Voltage Programming

D7	D6	REFERENCE VOLTAGE (V)
0	0	1.214
0	1	1.940
1	0	2.425
1	1	3.885

Applications Information

1-Cell and 2-Cell Circuit

See Figure 3 for an illustration of how to power the MAX5510/MAX5511 with either one lithium-ion battery or two alkaline batteries. The low current consumption of the devices makes the MAX5510/MAX5511 ideal for battery-powered applications.

Programmable Current Source

See the circuit in Figure 4 for an illustration of how to configure the MAX5510 as a programmable current source for driving an LED. The MAX5510 drives a standard NPN transistor to program the current source. The current source (I_{LED}) is defined in the equation in Figure 4.

Voltage Biasing a Current-Output Transducer

See the circuit in Figure 5 for an illustration of how to configure the MAX5510 to bias a current-output transducer. In Figure 5, the output voltage of the MAX5510 is a function of the voltage drop across the transducer added to the voltage drop across the feedback resistor R.

Self-Biased Two-Electrode Potentiostat Application

See the circuit in Figure 6 for an illustration of how to use the MAX5511 to bias a two-electrode potentiostat on the input of an ADC.

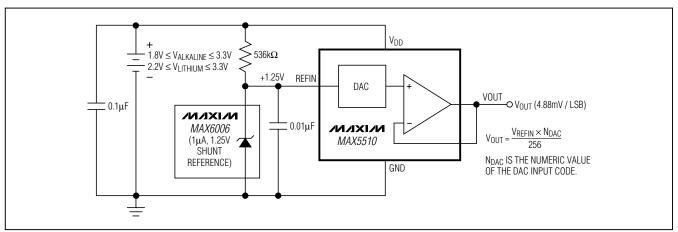


Figure 3. Portable Application Using Two Alkaline Cells or One Lithium Coin Cell

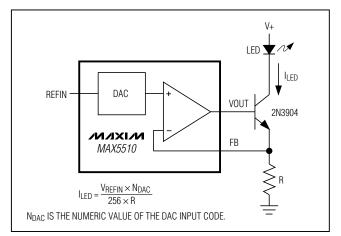


Figure 4. Programmable Current Source Driving an LED

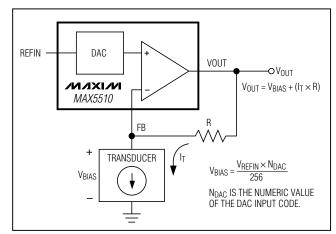


Figure 5. Transimpedance Configuration for a Voltage-Biased Current-Output Transducer

Figure 6. Self-Biased Two-Electrode Potentiostat Application

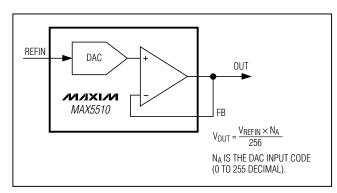


Figure 7. Unipolar Output Circuit

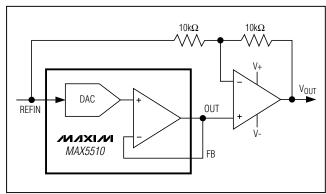


Figure 8. Bipolar Output Circuit

Unipolar Output

Figure 7 shows the MAX5510 in a unipolar output configuration with unity gain. Table 4 lists the unipolar output codes.

Bipolar Output

The MAX5510 output can be configured for bipolar operation, as shown in Figure 8. The output voltage is given by the following equation:

$$VOUT = VREF \times [(N_A - 128) / 128]$$

where NA represents the numeric value of the DAC's binary input code. Table 5 shows digital codes (offset binary) and the corresponding output voltage for the circuit in Figure 4.

Configurable Output Gain

The MAX5510/MAX5511 have a force-sense output, which provides a connection directly to the inverting terminal of the output op amp, yielding the most flexibility. The advantage of the force-sense output is that specific gains can be set externally for a given application. The gain error for the MAX5510/MAX5511 is specified in a unity-gain configuration (op-amp output and inverting terminals connected), and additional gain error results from external resistor tolerances. Another advantage of the force-sense DAC is that it allows many useful circuits to be created with only a few simple external components.

Table 4. Unipolar Code Table (Gain = +1)

DAC	CONTE	NTS	ANALOG OUTPUT
MSB		LSB	ANALOG GOTPOT
1111	1111	0000	+V _{REF} (255/256)
1000	0001	0000	+V _{REF} (129/256)
1000	0000	0000	$+V_{REF}$ (128/256) = $+V_{REF}$ /2
0111	1111	0000	+V _{REF} (127/256)
0000	0001	0000	+V _{REF} (1/256)
0000	0000	0000	0V

Table 5. Bipolar Code Table (Gain = +1)

DAC	CONTE	NTS	ANALOG OUTPUT
MSB		LSB	ANALOG OUTPUT
1111	1111	0000	+V _{REF} (127/128)
1000	0001	0000	+V _{REF} (1/128)
1000	0000	0000	OV
0111	1111	0000	-V _{REF} (1/128)
0000	0001	0000	-V _{REF} (127/128)
0000	0000	0000	-V _{REF} (128/128) = -V _{REF}

An example of a custom fixed gain using the force-sense output of the MAX5510/MAX5511 is shown in Figure 9. In this example R1 and R2 set the gain for VOUT.

 $V_{OUT} = [(V_{REFIN} \times N_A) / 256] \times [1 + (R2 / R1)]$ where NA represents the numeric value of the DAC input code.

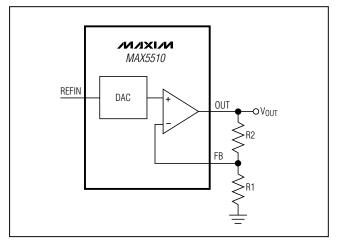


Figure 9. Separate Force-Sense Outputs Create Unity and Greater-than-Unity DAC Gains Using the Same Reference

Power Supply and Bypassing Considerations

Bypass the power supply with a 0.1µF capacitor to GND. Minimize lengths to reduce lead inductance. If noise becomes an issue, use shielding and/or ferrite beads to increase isolation. For the thin QFN package, connect the exposed paddle to ground.

Layout Considerations

Digital and AC transient signals coupling to GND can create noise at the output. Use proper grounding techniques, such as a multilayer board with a low-inductance ground plane. Wire-wrapped boards and sockets are not recommended. For optimum system performance, use printed circuit (PC) boards. Good PC board ground layout minimizes crosstalk between DAC outputs, reference inputs, and digital inputs. Reduce crosstalk by keeping analog lines away from digital lines.

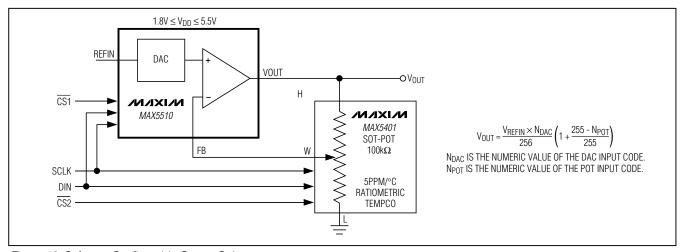
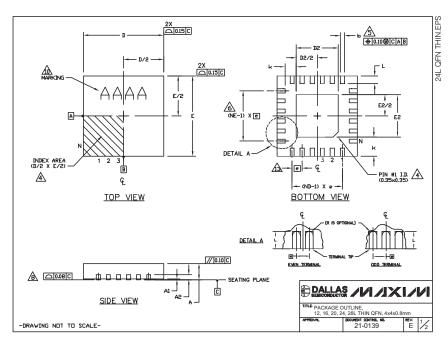


Figure 10. Software-Configurable Output Gain

Revision History

Chip Information


Pages changed at Rev 1: 1, 13, 17, 18

TRANSISTOR COUNT: 10,688

PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

				COMP	1DN	DIME	ISN	SNE								П	E	XPDS	SED	PAD	VARIATIONS			
PKG	12	2L 4×	4	16L 4x4		20L 4×4			24L 4×4			28L 4×4			П	DVC.	122			E5		DOWN BONDS		
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDN.	MAX.	MEN.	NDM.	MAX.		PKG. CODES	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20.0	0.05	0.0	20.0	0.05	0.0	0.02	0.05	0,0	20.0	0.05	Ш	T1244-4	1.95	2.10	2.25	1.95	210	2.25	NO
A2	0	.20 RE	F	0.	20 RE	F	0.	20 REI	F	0	20 RE	F	0	.20 RE	F	Ш	T1644-3	1.95	2.10	2.25	1.95	210	2.25	YES
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25	ш	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90	4,00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	Ш	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	H	T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e	_	0.80 85			65 BS		_	50 BS		-	.50 BS	_	_	1.40 BS		H	T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
k	0.25		-	0.25	-	-	0.25		-	0.25	-	-	0.25	-	-	H	T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50	H	T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	NO
N	-	12		_	16			20		\vdash	24		_	28			T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND
ND NE	\vdash	3		_	4		5		6		7													
		3			<u> </u>			5		_	6		_											
NOTE 1. 2.	DIMENS ALL DIM	MENSIO	NS ARE	ERANCI	LUMETE	ERS. A	TO AS		4.5M-	1994.	WGGD-	-2	l	WGGE		l								
1. 2. 3.	DIMENS ALL DIN N IS TO THE TE JESD 9 THE ZO	SIONING MENSIO HE TOT FRMINAL 15—1 S ONE INI	NS ARE TAL NUI . #1 ID PP-012 DICATED	ERANCI IN MI MBER C ENTIFIE DETAIL	ING CO LUMETE IF TERI R AND ILS OF TERMIN	ERS. AMMINALS. TERMINALS. TERMINALS. TERMINALS.	TO AS	ME YI ARE IN MBERIN IDENTII FIER M	4.5M— DEGRI NG CON FIER AF AY BE	1994, EES, WENTK E OPT ETHER	ON SHA	ALL CO BUT M DLD OR	WARK	TO E LOCAI	TURE.		ı							
NOTE 1. 2. 3. 🛦	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1	SIONING MENSIO HE TOT FRMINAL 15-1 S ONE INI SION 6 TERMIN	NS ARE TAL NUT #1 ID PP-012 DICATED APPLIE AL TIP.	ERANCI IN MI MBER C ENTIFIE DETA THE	ING CO LUMETE IF TERI R AND ILS OF TERMIN	ERS. AMMINALS. TERMIN TERMIN TERMIN AL #1 ZED TE	TO AS NOLES NAL NU NAL #1 IDENTIF	ME YI MBERIN IDENTI FIER M	4.5M— Degri Ng Con Fier Af Ay Bie IS Mea	1994, EES, WENTK EE OPT EITHER SURED	ON SHA IONAL, R A MC	ALL CO BUT M OLD OR EEN O.:	MARK MARK	TO E LOCAT ED FEA	TURE.		ı							
NOTE 1. 2. 3. 📤	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZO DIMENS FROM 1	SIONING MENSIO HE TOT ERMINAL 15-1 S ONE INI SION b TERMIN	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP.	ERANCI IN MI MBER C ENTIFIE DETA L THE S TO M	ING CO LUMETE IF TERI R AND ILS OF TERMIN IETALLI	ERS. AMMINALS. TERMINALS. TERMINAL #1 ZED TE	TO AS NOLES IN NAL NU IAL #1 IDENTIF	ME YI ARE IN MBERIN IDENTI TER M AND	4.5N- DEGRI NG CON FIER AF AY BIE IS MEA	1994, EES, WENTK EE OPT EITHER SURED	ON SHA IONAL, R A MC	ALL CO BUT M OLD OR EEN O.:	MARK MARK	TO E LOCAT ED FEA	TURE.		1							
NOTE 1. 2. 3. 📤	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1	SIONING MENSIO HE TOT ERMINAL 15-1 S ONE INI SION b TERMIN	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP.	ERANCI IN MI MBER C ENTIFIE DETA L THE S TO M	ING CO LUMETE IF TERI R AND ILS OF TERMIN IETALLI	ERS. AMMINALS. TERMINALS. TERMINAL #1 ZED TE	TO AS NOLES IN NAL NU IAL #1 IDENTIF	ME YI ARE IN MBERIN IDENTI TER M AND	4.5N- DEGRI NG CON FIER AF AY BIE IS MEA	1994, EES, WENTK EE OPT EITHER SURED	ON SHA IONAL, R A MC	ALL CO BUT M OLD OR EEN O.:	MARK MARK	TO E LOCAT ED FEA	TURE.									
NOTE 1. 2. 3. &	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZO DIMENS FROM 1	SIONING MENSIO HE TOT TRMINAL 15-1 S ONE INI SION 6 TERMIN D NE F	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO	ERANCI IN MI MBER C ENTIFIE DETA THE S TO IN	ING COLLUMETE IF TERI R AND ILS OF TERMIN METALLI NUMB	ERS. AMMINALS. TERMIN T	TO AS IGLES INAL NU IDENTIF RMINAL TERMIN	MBERIN MBERIN IDENTIFIER M. AND	4.5M— DEGRI NG COP FIER AF AY BE IS MEA	1994, EES. WENTK EE OPT EITHER SURED H D AI	ON SHA IONAL, R A MC BETWI	ALL CO BUT M OLD OR EEN O.:	UST BE WARK 25 mm	TO E LOCAI ED FEA 1 AND IVELY.	TURE.		1							
NOTE 1. 2. 3. 4. 5. 6. 7. 68.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND	SIONING MENSIO HE TOT FRMINAL 15-1 S ONE INI SION B TERMIN D NE F ULATION	NS ARE TAL NUI PP-012 DICATED APPLIE REFER APPLIE APPLIE	ERANCI IN MI MBER C ENTIFIE DETAIL THE S TO IN	ING COLUMETE IF TERI IR AND ILS OF TERMIN TETALLI NUMB IN A THE EXI	ERS. AMMINALS. TERMIN T	TO AS IGLES INAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT	ME YI MBERIN IDENTIFIER MI . AND I	4.5M— DEGRI NG CONFIER AF AY BIE IS MEA	1994. EES. WENTK E OPT EITHER SURED H D AI	ON SHA IONAL, RAMO BETWA NDE!	ALL CO BUT M DLD OR EEN O.: SIDE RE	UST BE MARK 25 mm ESPECT MINALS	TO E LOCAT ED FEA 1 AND TVELY.	TURE.		ı							
NOTE 1. 2. 3. 4. 5. 7. 6. 9.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPE COPLAN	SIONING MENSIO HE TOT CRMINAL 15-1 S ONE IN SION b TERMIN D NE F ULATION NARITY NG CON	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER APPLIE APPLIE IFORMS	LERANCI IN MILER COMENTIFIE TO THE TO JE TO JE	ING COLUMETE IF TERI IR AND ILS OF TERMIN IETALLI NUMB IN A HE EXI DEC M	ERS. AMMINALS. TERMINITERMINITERMINITERMINITERMINITERMINITER OF SYMME POSED 0220,	TO AS IGLES INAL NU IAL #1 IDENTIF RMINAL TERMIN	ME YI MBERIN IDENTIFIER MI AND I MALS O FASHK SINK SI	4.5N- DEGRI NG CONFIER AF AY BE IS MEA N EACH	1994. EES. WENTK E OPT EITHER SURED H D AI	ON SHA IONAL, RAMO BETWA NDE!	ALL CO BUT M DLD OR EEN O.: SIDE RE	UST BE MARK 25 mm ESPECT MINALS	TO E LOCAT ED FEA 1 AND TVELY.	TURE.		ı							
NOTE 1. 2. 3. 4. 5. 7. 6. 9.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPL COPLAN DRAWIN	SIONING MENSIO HE TOT CRIMINAL ISONE INI SION IS TERMIN D NE F ULATION NARITY NG CON C IS FC	NS ARE (AL NUI) 1 ID PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE IFORMS OR PAC	ERANCE IN MI MBER C ENTIFIE IN TO IN TO THE DSSIBLE S TO I TO JE KAGE C	ING COLUMETE OF TERMIN HETALLI NUMB IN A HE EXI DEC MORE	ERS. AMMINALS. TERMINITERMINITERMINITERMINITERMINITER OF SYMME POSED 0220, TION F	TO AS IGLES INAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	ME YI MBERIN IDENTIFIER MI AND I MALS O FASHK SINK SI	4.5N- DEGRI NG CONFIER AF AY BE IS MEA N EACH	1994. EES. WENTK E OPT EITHER SURED H D AI	ON SHA IONAL, RAMO BETWA NDE!	ALL CO BUT M DLD OR EEN O.: SIDE RE	UST BE MARK 25 mm ESPECT MINALS	TO E LOCAT ED FEA 1 AND TVELY.	TURE.									
NOTE 1. 2. 3. 4. 5. 7. 6. 9. 11. 0	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPU COPLAN DRAWIN MARKING	SIONING MENSIO HE TOT SONE INI SION b TERMIN D NE F ULATION NARITY G CON C ARITY S	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE APPLIE	ERANCE IN MI MBER C ENTIFIE L THE S TO IN TO THE SSIBLE STO T TO JE KAGE C	ING COLLUMETE IF TERI R AND ILS OF TERMIN METALLI NUMB IN A HE EXI DEC MI	ERS. AMMINALS. TERMINIT	TO AS IGLES INAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	ME YI MBERIN IDENTIFIER MI AND I MALS O FASHK SINK SI	4.5N- DEGRI NG CON FIER AF AY BE IS MEA N EACI ON. LUG AS T2444-	1994. EES. WENTK E OPT EITHER SURED H D AI	ON SHA IONAL, RAMO BETWA NDE!	ALL CO BUT M DLD OR EEN O.: SIDE RE	UST BE MARK 25 mm ESPECT MINALS	TO E LOCAT ED FEA 1 AND TVELY.	TURE.		_	- DA		·e				
NOTE 1. 2. 3. 4. 5. 7. 6. 9. 11. 0	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPULATION DRAWIN MARKING COPLANA WARPAGI EAD CE	GIONING MENSIO HE TO' FERMINAL 15-1 S SNE IN TERMIN D NE F ULATION NARITY NG CON ARITY E SHAL ENTERL	NS ARE TAL NUT PP-012 DICATED APPLIE APPLIE APPLIE TO APPLIE IFORMS OR PAC SHALL NOT INES TO	LERANCI I IN MI MBER C. PENTIFIE P. DETAIL THE TO THE TO JE TO JE KAGE C. EXCEEL EXCEPT EXCEPT EXCEPT OF BE AT	ING COLUMETE OF TERMIN NUMB NUMB NUMB NUMB NUMB NUMB NUMB NUM	MINALS. TERMINALS. TERMINAL #1 ZED TE ER OF SYMME POSED 0220, TION F 0.08mm C POSIT	TO AS NGLES NAL NU NAL NU	MARE IN IDENTIFICATION OF FASHIK SINK SINK SINK SINK SINK SINK SINK SI	4.5M— DEGRI NG COM FIER AF BE IS MEA NN EACI NN EACI NLUG AS TZ4444- ILV.	1994, EES. MENTIK EE OPT EITHER SURED H D AI	ON SH/IONAL, R A MC BETWI ND E !	ALL CO BUT M OLD OR EEN O.: SIDE RE HE TER	UST BE MARK 25 mm ESPECT MINALS 12844-	TO E LOCAI ED FEA I AND IVELY.	TURE.		_	DA SENIC	LLA ORDUCE	AS A	- L-I	<u>/ </u>	×	<u> </u>
NOTE 1. 2. 3. 4. 5. 7. 6. 9. 11. 0	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM 1 ND AND DEPOPL COPLAN MARKING COPLAN WARPAGI	GIONING MENSIO HE TO' FERMINAL 15-1 S SNE IN TERMIN D NE F ULATION NARITY NG CON ARITY E SHAL ENTERL	NS ARE TAL NUT PP-012 DICATED APPLIE APPLIE APPLIE TO APPLIE IFORMS OR PAC SHALL NOT INES TO	LERANCI I IN MI MBER C. PENTIFIE P. DETAIL THE TO THE TO JE TO JE KAGE C. EXCEEL EXCEPT EXCEPT EXCEPT OF BE AT	ING COLUMETE OF TERMIN NUMB NUMB NUMB NUMB NUMB NUMB NUMB NUM	MINALS. TERMINALS. TERMINAL #1 ZED TE ER OF SYMME POSED 0220, TION F 0.08mm C POSIT	TO AS NGLES NAL NU NAL NU	MARE IN IDENTIFICATION OF FASHIK SINK SINK SINK SINK SINK SINK SINK SI	4.5M— DEGRI NG COM FIER AF BE IS MEA NN EACI NN EACI NLUG AS TZ4444- ILV.	1994, EES. MENTIK EE OPT EITHER SURED H D AI	ON SH/IONAL, R A MC BETWI ND E !	ALL CO BUT M OLD OR EEN O.: SIDE RE HE TER	UST BE MARK 25 mm ESPECT MINALS 12844-	TO E LOCAI ED FEA I AND IVELY.	TURE.			BAMICE PACE				<u>/ 1</u>	×	1/1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

18 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600