19-3771; Rev 1; 10/05

EVALUATION KIT AVAILABLE

Dual-/Triple-Voltage, Power-Supply Trackers/Sequencers/Supervisors

General Description

The MAX6877/MAX6878/MAX6879 multivoltage power trackers/sequencers/supervisors monitor up to three system voltages and provide proper power-up and power-down control for systems requiring voltage tracking or sequencing. These devices ensure controlled voltage tracking within a specified range or sequencing in the proper order as system power supplies are enabled. The MAX6877/MAX6878/MAX6879 generate all required voltages and timing to control up to three external n-channel pass FETs for the OUT1/OUT2/OUT3 supply voltages (see the *Selector Guide* for different features of each device).

The MAX6877/MAX6878/MAX6879 feature adjustable undervoltage thresholds for each input supply. When all the voltages are above these adjustable thresholds, the devices turn on the external n-channel MOSFETs to either sequence or track the voltages to the system. During voltage-tracking mode, the voltage at the GATE of each MOSFET is increased to slowly bring up all supplies at a controlled slew rate. The MAX6877/ MAX6878/MAX6879 feature an autoretry or latch-off mode with capacitor-adjusted timing.

These devices also provide a controlled power-down (tracking mode) when the system shuts off in an orderly manner. When an unexpected fault occurs, the outputs are all pulled down simultaneously with an internal 100 Ω pulldown to help discharge capactive loads at the MOSFET's source. The MAX6877/MAX6878/MAX6879 feature independent internal charge pumps to fully enhance the external FETs for low-voltage drop at highpass current. The MAX6877 and MAX6878 also feature a power-good output with a selectable timeout period that can be used for system reset.

The MAX6877/MAX6878/MAX6879 are available in small 4mm x 4mm 24-pin and 16-pin thin QFN packages and are fully specified over the -40°C to +85°C extended operating temperature range.

Applications
Multivoltage Systems
Networking Systems
Telecom
Storage Equipment
Servers/Workstations

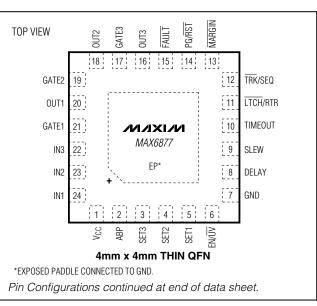
Selector Guide appears at end of data sheet.

___ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

_ Features

- Pin-Selectable Tracking or Sequencing Control for Up to Three Supply Voltages
- Capacitor-Adjustable Power-Up/Down Tracking Slew Rate
- Capacitor-Adjustable Power-Up Sequencing Delay
- Internal Charge Pumps to Enhance External n-Channel FETs
- Capacitor-Adjustable Timeout Period Power-Good Output (MAX6877/MAX6878)
- Adjustable Undervoltage Lockout or Logic-Enable Input
- ♦ Internal 100Ω Pulldown for Each Output to Discharge Capacitive Load Quickly
- 0.5V to 5.5V Nominal IN_/OUT_ Range
- ♦ 2.7V to 5.5V Operating Voltage Range
- Immune to Short Voltage Transients
- Small 4mm x 4mm 24-Pin or 16-Pin Thin QFN Packages


Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX6877ETG+	-40°C to +85°C	24 Thin QFN	T2444-4

Ordering Information continued at end of data sheet.

+Denotes lead-free package.

Pin Configurations

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)

IN1, IN2, IN3, V _{CC}	0.3V to +6V
-0.3V to the highest o	f VIN1 - VIN3 or VCC
SET1, SET2, SET3	0.3V to +6V
GATE1, GATE2, GATE3	0.3V to +12V
OUT1, OUT2, OUT3	0.3V to +6V
LTCH/RTR, TRK/SEQ, MARGIN	0.3V to +6V
FAULT, PG/RST, EN/UV	0.3V to +6V
DELAY, SLEW, TIMEOUT	0.3V to +6V
OUT_ Current	±50mA
GND Current	±50mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC}, IN1, IN2, or IN3 = +2.7V to +5.5V, EN/ \overline{UV} = \overline{MARGIN} = ABP, T_A = -40°C to +85°C, unless otherwise specified. Typical values are at T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Operating Voltage Range	Vcc	Voltage on ABP (the highest of V_{CC} or IN_) to ensure that PG/RST and FAULT are valid and GATE_ = 0V	1.4			V
		Voltage on ABP (the highest of V _{CC} or IN_) to ensure the device is fully operational	2.7		5.5	
Supply Current	ICC	$V_{CC} = 5.5V$, IN1 = IN2 = IN3 = 3.3V, no load		1.1	1.8	mA
SET Threshold Dange	\/	SET_ falling, $T_A = +25^{\circ}C$	0.4925	0.5	0.5075	v
SET_ Threshold Range	V _{TH}	SET_ falling, $T_A = -40^{\circ}C$ to $+85^{\circ}C$	0.4875	0.5	0.5125	v
SET_ Threshold Hysteresis	VTH_HYS	SET_ rising		0.5		%
SET_ Input Current	ISET	SET_ = 0.5V	-100		+100	nA
EN/UV Input Voltage	V _{EN_R}	Input rising		1.286		v
	V _{EN_F}	Input falling	1.22	1.25	1.28	v
EN/UV Input Current	IEN		-5		+5	μA
EN/UV Input Pulse Width	t _{EN}	EN/UV falling, 100mV overdrive	7			μs
DELAY, TIMEOUT Output Current	ID	(Notes 2, 3)	2.12	2.5	2.88	μA
DELAY, TIMEOUT Threshold Voltage		V _{CC} = 3.3V		1.25		V
SLEW Output Current (Note 4)	Is		22.5	25	27.5	μA
Track/Sequence Slew-Rate Timebase Accuracy	SR	C _{SLEW} = 200pF (Note 4)	-15		+15	%
Timebase/C _{SLEW} Ratio		100pF < C _{SLEW} < 1nF (Note 4)		104		kΩ
Slew-Rate Accuracy during Power- Up and Power-Down		C _{SLEW} = 200pF, ABP = 5.5V (Note 4)	-50		+50	%
Power-Good Threshold	VTH_PG	V _{OUT} _falling	91.5	92.5	93.5	%

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC}, IN1, IN2, or IN3 = +2.7V to +5.5V, $EN/UV = \overline{MARGIN} = ABP$, $T_A = -40^{\circ}C$ to +85°C, unless otherwise specified. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Power-Good Threshold Hysteresis	VHYS_PG	V _{OUT} _rising		0.5		%
GATE_ Output High	VGOH	Isource = 0.5µA	IN_ + 4.2	IN_ + 5.0	IN_ + 5.8	V
GATE_ Pullup Current	I _{GUP}	During power-up and power-down, VGATE_ = 1V	2.5	4		μA
	I _{GD}	During power-up and power-down, VGATE_ = 5V	2.5	4		μA
GATE_ Pulldown Current		When disabled, V _{GATE} = 5V, V _{IN} \geq 2.7V		9.5		mA
	IGDS	When disabled, $V_{GATE} = 5V$, $V_{IN} \ge 4V$		20		ША
SET_ to GATE_ Delay	td-gate	SET falling, 25mV overdrive		6		μs
FAULT, PG/RST Output Low	Vol	$V_{IN} \ge 2.7V$, $I_{SINK} = 1$ mA, output asserted			0.3	v
FAULT, FG/HST Output Low	VOL	$V_{IN} \ge 4.0V$, $I_{SINK} = 4mA$, output asserted			0.4	v
Tracking Differential Voltage Stop Ramp	Vtrk	Differential between each of the OUT_ and the ramp voltage during power-up and power-down, Figure 10 (Note 5)	75	125	180	mV
Tracking Differential Fault Voltage	V _{TRK_F}	Differential between each of the OUT_ and the ramp voltage, Figure 10 (Note 5)	200	250	310	mV
Tracking Differential Voltage Hysteresis				20		%
Power-Low Threshold	VTH_PL	OUT_ falling	125	142	170	mV
Power-Low Hysteresis	V _{TH_PLHYS}	OUT_ rising		10		mV
OUT to GND Pulldown Impedance		V _{ABP} > 2.7V (Note 6)		100		Ω
MARGIN, TRK/SEQ, LTCH/RTR Pullup Current	lıN		7	10	13	μA
MARGIN, TRK/SEQ, LTCH/RTR	VIL				0.8	v
Input Voltage	VIH		2.0			v
MARGIN, TRK/SEQ, LTCH/RTR Glitch Rejection				100		ns

Note 1: Specifications guaranteed for the stated global conditions. 100% production tested at $T_A = +25^{\circ}C$ and $T_A = +85^{\circ}C$. Specifications at $T_A = -40^{\circ}C$ to $+85^{\circ}C$ are guaranteed by design. These devices meet the parameters specified when at least one of V_{CC}, IN1/IN2/IN3 is between 2.7V to 5.5V, while the remaining IN1/IN2/IN3 are between 0 and 5.5V.

Note 2: A current I_D = 2.5µA ±15% is generated internally and is used to set the DELAY and TIMEOUT periods and used as a reference for t_{DELAY} and t_{TIMEOUT}.

Note 3: The total DELAY is $t_{DELAY} = 200ms + (500k_{\Omega} \times C_{DELAY})$. Leave DELAY unconnected for 200µs delay. The total TIMEOUT is $t_{TIMEOUT} = 200\mu s + (500k_{\Omega} \times C_{TIMEOUT})$. Leave TIMEOUT unconnected for 200µs timeout.

Note 4: A current I_S = 25μ A ±10% is generated internally and used as a reference for t_{FAULT}, t_{RETRY}, and slew rate.

Note 5: During power-up, only the condition OUT_ < ramp - V_{TRK} is checked in order to stop the ramp. However, both conditions OUT_ < ramp - V_{TRK_F} and OUT_ > ramp + V_{TRK_F} cause a fault. During power-down, only the condition OUT > ramp + V_{TRK} is checked in order to stop the ramp. However, both conditions OUT_ < ramp - V_{TRK_F} and OUT_ > ramp + V_{TRK_F} cause a fault (see Figure 10). Therefore, if OUT1, OUT2, and OUT3 (during power-up tracking and power-down) differ by more than 2 x V_{TRK_F}, a fault condition is asserted.

Note 6: A 100 Ω pulldown to GND activated by a fault condition. See the Internal Pulldown section.

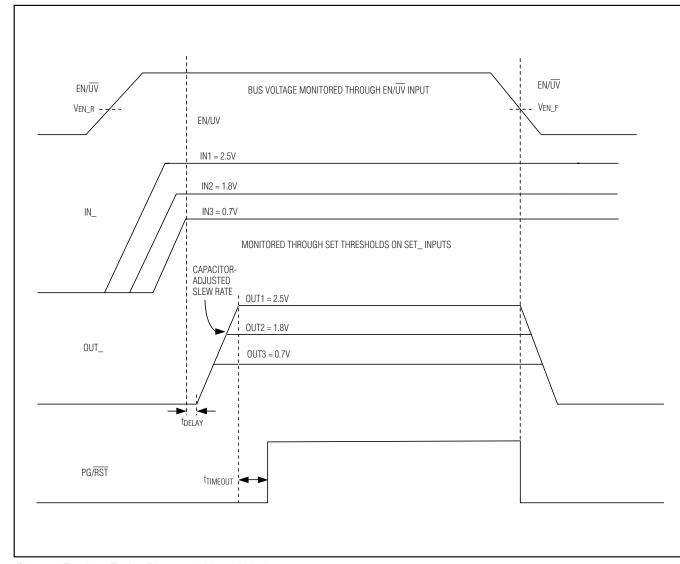


Figure 1. Tracking Timing Diagram in Normal Mode

MAX6877/MAX6878/MAX6879

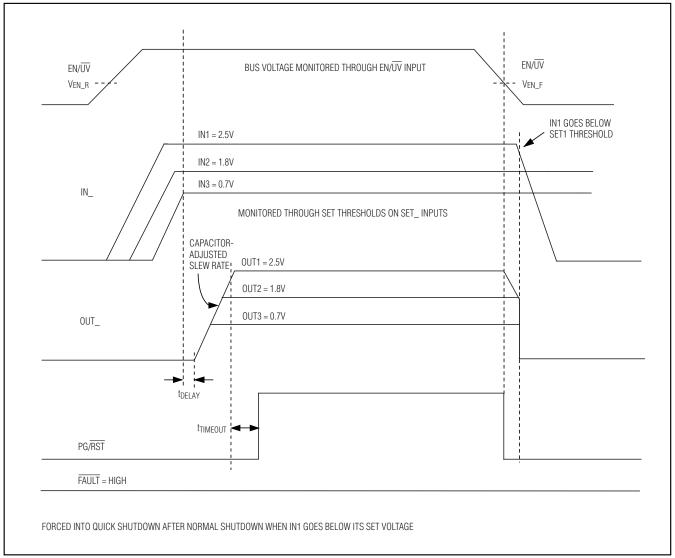


Figure 2. Tracking in Fast Shutdown Mode

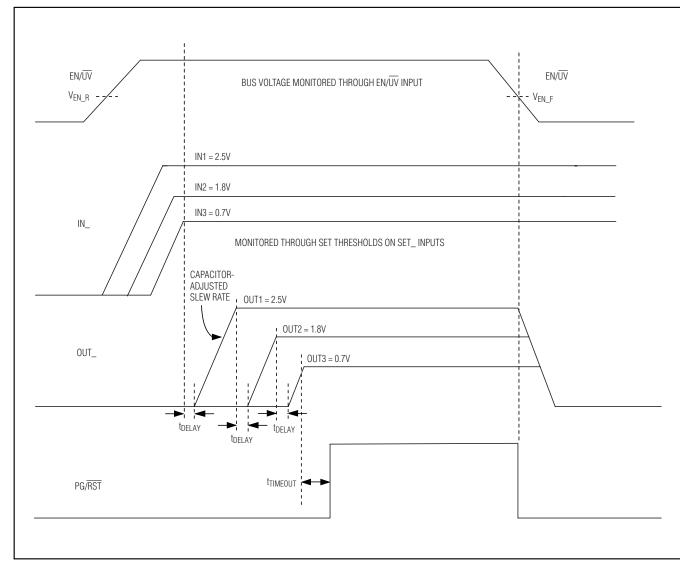


Figure 3. Sequencing in Normal Mode

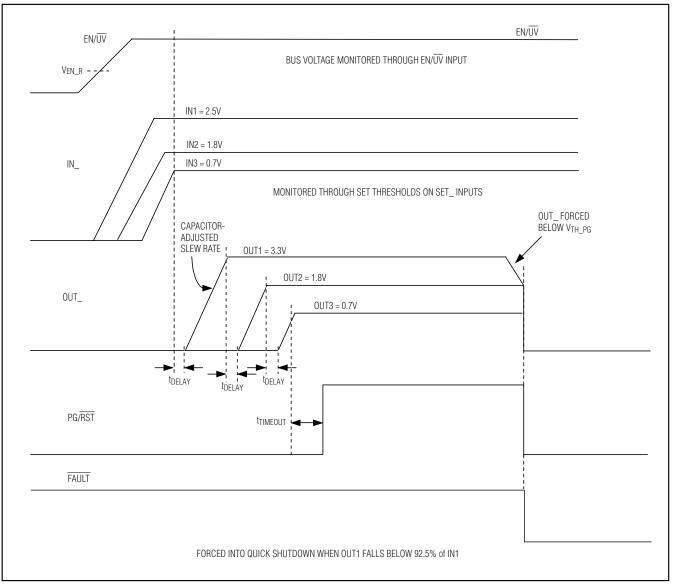


Figure 4. Sequencing in Fast Shutdown Mode

MAX6877/MAX6878/MAX6879

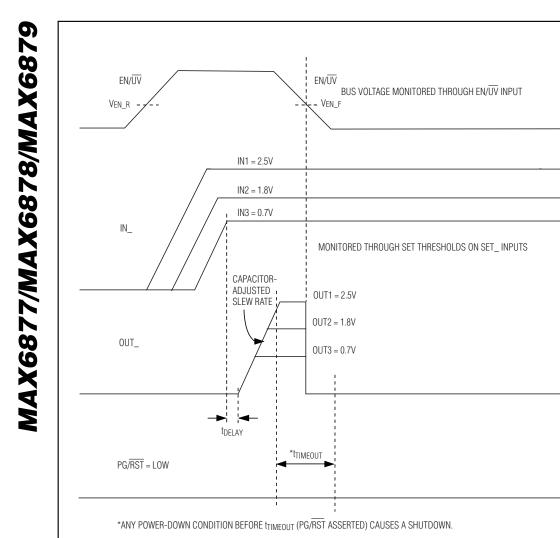


Figure 5. Timing Diagram (Aborted Tracking)

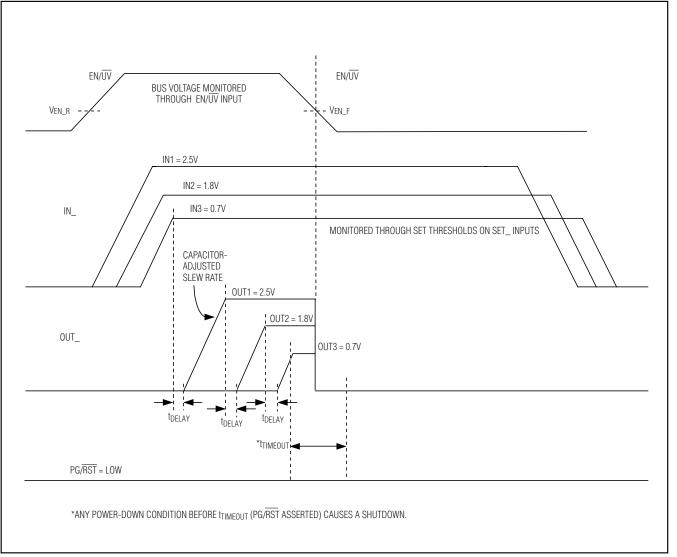
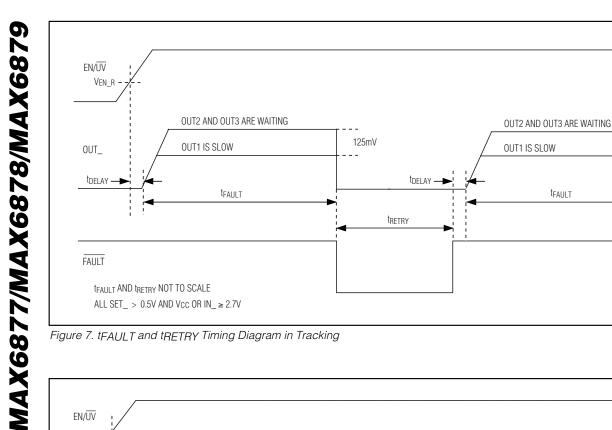



Figure 6. Timing Diagram (Aborted Sequencing)

9

MAX6877/MAX6878/MAX6879

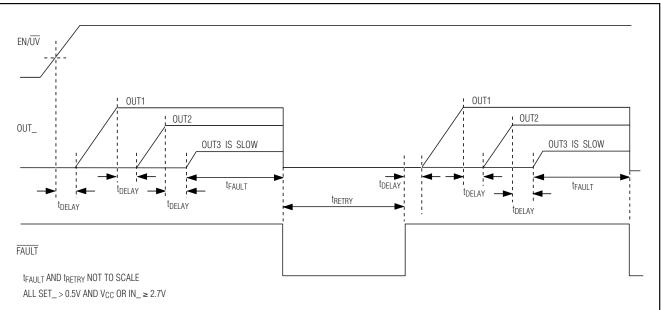
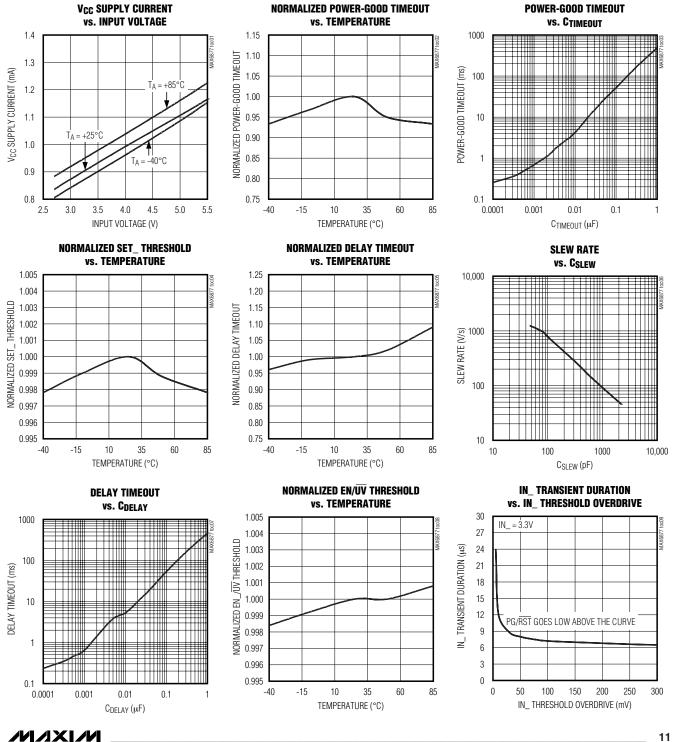
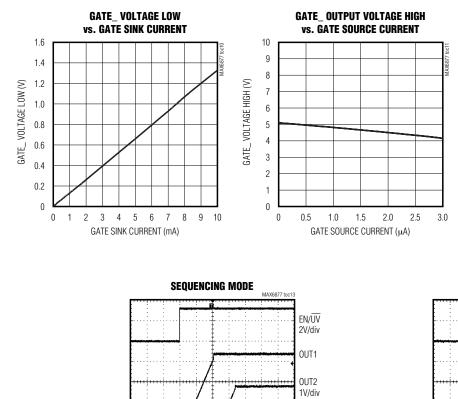
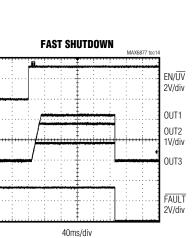



Figure 8. tFAULT and tRETRY Timing Diagram in Sequencing


Typical Operating Characteristics

(V_{CC} = 2.7V to 5.5V, C_{SLEW} = 200pF, EN = MARGIN = ABP, T_A = +25°C, unless otherwise noted.)



Typical Operating Characteristics (continued)

(V_{CC} = 2.7V to 5.5V, C_{SLEW} = 200pF, EN = MARGIN = ABP, T_A = +25°C, unless otherwise noted.)

20ms/div

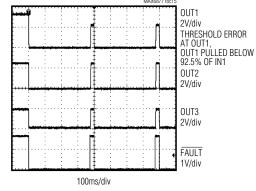
TRACKING MODE

10ms/div

MAX6877 toc12

EN/UV

2V/div

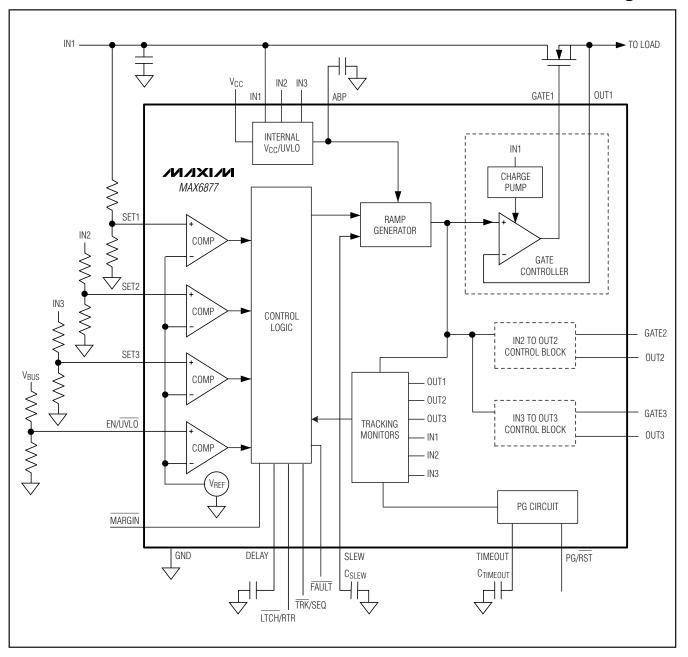

OUT1

OUT2 1V/div

OUT3

OUT3

M \X | M


Pin Description

	PIN			
MAX6877	MAX6878	MAX6879	NAME	FUNCTION
1	1		V _{CC}	Optional Supply Voltage Input. Connect V _{CC} to an alternate (i.e., always-on) supply if desired. Leave V _{CC} unconnected, if not used. V _{CC} allows IN_ supplies less than UVLO to be tracked. V _{CC} is internally pulled down by a 100k Ω resistor.
2	2	1	ABP	Internal Supply Bypass Input. Bypass ABP with a 1µF capacitor to GND. ABP maintains the device supply voltage during rapid power-down conditions.
3	_	—	SET3	Externally Adjusted IN_ Undervoltage Lockout Threshold. Connect SET_ to
4	4	2	SET2	an external resistor-divider network to set the desired undervoltage threshold
5	5	3	SET1	for each IN_ supply (see the <i>Typical Application Circuit</i>). All SET_ inputs must be above the internal SET_ threshold (0.5V) to enable tracking or sequencing functionality.
_	3, 16, 17, 22	_	N.C.	No Connection. Not internally connected.
6	6	4	EN/UV	Logic-Enable Input or Undervoltage Lockout Monitor Input. EN/ \overline{UV} must be high (EN/ \overline{UV} > V _{EN_R}) to enable voltage tracking or sequencing power-up operation. OUT_ begins tracking down when EN/ \overline{UV} < V _{EN_F} . Connect EN/ \overline{UV} to an external resistor-divider network to set the external UVLO threshold.
7	7	5	GND	Ground
8	8	6	DELAY	Tracking Startup/Sequence Delay Select Input. Connect a capacitor from DELAY to GND to select the desired delay period before tracking is enabled (after all SET_ inputs and EN/UV are above their respective thresholds) or between supply sequences. Leave DELAY unconnected for the default 200µs delay period.
9	9	7	SLEW	Slew-Rate Adjustment Input. Connect a capacitor from SLEW to GND to select the desired OUT_ slew rate.
10	10	_	TIMEOUT	PG/RST Timeout Period Adjust Input. PG/RST asserts high after the timeout period when all OUT_ exceed their IN_ referenced threshold. Connect a capacitor from TIMEOUT to GND to set the desired timeout period. Leave TIMEOUT unconnected for the default 200µs delay period.
11	11	8	LTCH/RTR	Latch/Autoretry Selection Input. Drive $\overline{\text{LTCH}}/\text{RTR}$ low to select the latch mode. Connect $\overline{\text{LTCH}}/\text{RTR}$ to ABP or leave unconnected to select autoretry mode. $\overline{\text{LTCH}}/\text{RTR}$ is internally pulled up to ABP through a 10µA current source.
12	12	9	TRK/SEQ	Track/Sequence Select Input. Drive TRK/SEQ low to enable supply tracking function. Connect TRK/SEQ to ABP or leave it unconnected to enable supply sequencing. TRK/SEQ is internally pulled to ABP through a 10µA current source.
13	13	_	MARGIN	Margin Input, Active-Low. Drive \overline{MARGIN} low to enable margin mode (see the <i>Margin Input (MARGIN)</i> section). The MARGIN functionality is disabled (returns to normal monitoring mode) after MARGIN returns high. MARGIN is internally pulled up to ABP through a 10µA current source.

Pin Description (continued)

	PIN		NAME	FUNCTION
MAX6877	MAX6878	MAX6879	NAME	FUNCTION
14	14	_	PG/RST	Power-Good Output, Open-Drain. PG_ \overline{RST} asserts high $t_{TIMEOUT}$ after all OUT_ voltages exceed the V_{TH_PG} thresholds.
15	15	10	FAULT	Tracking Fault Alert Output, Active Low, Open-Drain. FAULT asserts low if a tracking failure is present for longer than the selected fault period or if tracking voltages fail by more than ±250mV. FAULT asserts low if any OUT_falls below the corresponding IN_ voltage.
16			OUT3	Channel 3 Monitored Output Voltage. Connect OUT3 to the source of an n-channel FET. A fault condition activates a 100 Ω pulldown to ground.
17	_	_	GATE3	Gate Drive for External n-Channel FET. An internal charge pump boosts GATE3 to V_{IN3} + 5V to fully enhance the external n-channel FET when power-up is complete.
18	18	11	OUT2	Channel 2 Monitored Output Voltage. Connect OUT2 to the source of an n-channel FET. A fault condition activates a 100Ω pulldown to ground.
19	19	12	GATE2	Gate Drive for External n-Channel FET. An internal charge pump boosts GATE2 to V_{IN2} + 5V to fully enhance the external n-channel FET when power-up is complete.
20	20	13	OUT1	Channel 1 Monitored Output Voltage. Connect OUT1 to the source of an n-channel FET. A fault condition activates a 100Ω pulldown to ground.
21	21	14	GATE1	Gate Drive for External n-Channel FET. An internal charge pump boosts GATE1 to V_{IN1} + 5V to fully enhance the external n-channel FET when power-up is complete.
22		_	IN3	Supply Input Voltage. IN1, IN2, or IN3 must be greater than the internal undervoltage lockout ($V_{ABP} = 2.7V$) to enable the tracking or sequencing
23	23	15	IN2	functionality. Each IN_ input is simultaneously monitored by SET_ inputs to ensure all supplies have stabilized before power-up is enabled. If IN_ is connected to ground or left unconnected and SET_ is above 0.5V, then no-
24	24	16	IN1	sequencing control is performed on that channel. Each IN_ is internally pulled down by a 100k $\!\Omega$ resistor.
EP	EP	EP	EP	Exposed Paddle. Connect exposed paddle to ground.

Functional Diagram

MAX6877/MAX6878/MAX6879

Detailed Description

The MAX6877/MAX6878/MAX6879 multivoltage power trackers/sequencers/supervisors monitor up to three system voltages and provide proper power-up and power-down control for systems requiring voltage tracking or sequencing. These devices ensure controlled voltage tracking with a specified range or sequencing in the proper order as system power supplies are enabled. The MAX6877/MAX6878/MAX6879 generate all required voltages and timing to control up to three external n-channel pass FETs for the OUT1/OUT2/OUT3 supply voltages (see the *Selector Guide* for different features of each device.)

The MAX6877/MAX6878/MAX6879 feature adjustable undervoltage thresholds for each input supply. When all the voltages are above these adjusted thresholds, the devices turn on the external n-channel MOSFETs to either sequence or track the voltages to the system. During the voltage-tracking mode, the voltage at the GATE of each MOSFET is increased to slowly bring up all supplies at a controlled slew rate. The voltage at the source (output) of each MOSFET is internally compared to a control ramp to maintain a low differential between each monitored supply. Tracking is dynamically adjusted to force all outputs to track within 125mV of the reference ramp. If for any reason any supplies fail to track within ±250mV of the reference ramp, the FAULT output is asserted, the power-up mode is terminated, and all outputs are quickly powered off. In sequencing mode, the outputs are turned on one after the other, OUT1 first and OUT3 last. The MAX6877/MAX6878/ MAX6879 feature an autoretry or latch-off mode with capacitor-adjusted timing.

These devices also provide a controlled power-down (tracking mode) when the system shuts off in an orderly manner. When an unexpected fault occurs, the outputs are all pulled down simultaneously with an internal 100 Ω pulldown to help discharge capacitive loads at the MOSFET's source.

The MAX6877/MAX6878/MAX6879 feature independent internal charge pumps to fully enhance the external FETs for low-voltage drops at highpass currents. The MAX6877/MAX6878 also feature a power-good output with a selectable timeout period that can be used for system reset.

The MAX6877/MAX6878/MAX6879 monitor up to three voltages. Devices may be configured to exclude any IN_. To disable the tracking or sequencing operation of any IN_, connect the IN_ to ground (or leave unconnected) and connect SET_ to a voltage greater than 0.5V. The channel exclusion feature adds more flexibili-

ty to the device in a variety of different applications. As an example, the MAX6877 can track or sequence two voltages using IN1 and IN2 while IN3 is left disabled.

Powering the MAX6877/MAX6878/MAX6879

These devices derive power from either the IN1, IN2, or IN3 voltage inputs or V_{CC} (see the *Functional Diagram*). V_{CC} or one of the IN_ inputs must be at least +2.7V to ensure full device operation.

The highest input voltage on IN1/IN2/IN3 or V_{CC} supplies power to the devices. Internal hysteresis ensures that the supply input that initially powers these devices continues to power the MAX6877/MAX6878/MAX6879 when multiple input voltages are within 100mV (typ) of each other.

ABP

ABP powers the analog circuitry. Bypass ABP to GND with a 1 μ F ceramic capacitor installed as close to the device as possible. ABP takes the highest voltage of IN_ or V_{CC}. Do not use ABP to provide power to external circuitry. ABP maintains the device supply voltage during rapid power-down conditions.

Tracking and Sequencing Modes (TRK/SEQ)

To enable the power-up/power-down voltage-tracking operation, drive TRK/SEQ low (connect TRK/SEQ to GND). To enable power-up sequencing and powerdown tracking functions, drive TRK/SEQ high (connect TRK/SEQ to ABP) or leave it unconnected. TRK/SEQ is internally pulled to ABP through a 10µA current source (see Figures 1 and 3).

Tracking

To operate in tracking mode, connect TRK/SEQ to GND. When $V_{FN/UV} > 1.25V$ and all SET inputs are above the internal SET_ threshold (0.5V), the tracking process is initiated. The MAX6877/MAX6878/MAX6879 generate an internal reference ramp voltage that drives the control loops for the tracked voltages. The tracking functionality is monitored with a comparator control block for each output (see the Functional Diagram). The comparators monitor each OUT_ voltage with respect to the common reference ramp voltage to ensure the OUT_ voltages stay within 125mV of the reference ramp, monitor each tracked output voltage with respect to its source input voltage, and monitor each output voltage with respect to GND during powerup/retry cycles. If for any reason any supplies fail to track within ±250mV of the reference ramp, the FAULT output is asserted, the power-up mode is terminated, and all outputs are quickly powered off.

During ramp up, if an OUT_ voltage is less than the reference ramp voltage by more than 125mV, the control loop dynamically stops the control ramp voltage from rising until the slow OUT_ voltage catches up. If an OUT_ voltage is greater or less than the reference ramp voltage by more than 250mV, a fault is signaled and a power-down phase is initiated.

The slew rate for the reference ramp voltage is capacitor adjustable. Connect a capacitor from SLEW to ground to select the desired OUT_ slew rate. When all OUT_ voltages have exceeded the VTH_PG percentage of the IN_ voltage (external n-channel FET is saturated), PG/RST asserts high after tTIMEOUT indicating successful tracking.

Sequencing

The sequencing operation can be initiated after all input conditions for power-up are met $V_{EN/UV} > 1.25V$ and all SET_ inputs are above the internal SET_ threshold (0.5V). In sequencing mode, the outputs are turned on sequentially, OUT1 first and OUT3 last. Before turning on each channel, a delay period occurs as in Figure 3 (programmable by connecting a capacitor from DELAY to ground). The power-up phase for each channel ends when its output voltage exceeds a fixed percentage (VTH_PG) of the corresponding IN_ voltage. When all channels have exceeded these thresholds, PG/RST asserts high after tTIMEOUT, indicating a successful sequence.

If there is a fault condition during the initial power-up sequence, the process is aborted.

When powering down, all outputs turn off simultaneously, tracking each other. No reverse power-down sequencing occurs.

Power-Up and Power-Down

During power-up, the OUT_ is forced to follow the internal reference ramp voltage by an internal loop that controls the GATE_ of the external MOSFET. This phase must be completed within the adjustable fault timeout period; otherwise, the part forces a shutdown on all GATE_.

Once the power-up is completed, a power-down phase can be initiated by forcing $V_{EN/\overline{UV}}$ below V_{EN_F} . The reference voltage ramp ramps down at the capacitor-adjusted slew rate. The control-loop comparators monitor each OUT_ voltage with respect to the common reference ramp voltage. During ramp down, if an OUT_ voltage is greater than the reference ramp voltage by more than V_{TRK} , the control loop dynamically stops the control ramp voltage from decreasing until the slow OUT_ voltage catches up. If an OUT_ voltage is greater

or less than the reference ramp voltage by more than $V_{TRK}F$, a fault is signaled and the fast-shutdown mode is initiated. In fast-shutdown mode, a 100 Ω pulldown resistor is connected from OUT_ to GND to quickly discharge capacitance at OUT_ and GATE _ is pulled low with a strong I_{GDS} current (see Figures 2 and 4).

Figures 5 and 6 show aborted tracking and sequencing modes. When EN/\overline{UV} goes low before $t_{TIMEOUT}$ expires, all the outputs go low and the device goes into fast shutdown.

Internal Pulldown

To ensure that the OUT_ voltages are not held high by a large output capacitance after a fault has occurred, there is a 100 Ω internal pulldown at OUT_. The pulldown ensures that all OUT_ voltages are below V_{TH_PL} (referenced to GND) before power-up cycling is initiated. The internal pulldown also ensures a fast discharge of the output capacitor during fast shutdown and fault modes. The pulldowns are not present during normal operation.

Stability Comment

No external compensation is required for tracking or slew-rate control.

Inputs

IN1/IN2/IN3

The highest voltage on VCC, IN1, IN2, or IN3 supplies power to the device. The undervoltage threshold for each IN_ supply is set with an external resistor-divider from each IN_ to SET_ to ground.

Undervoltage Lockout Threshold Inputs (SET_) The MAX6877 features three and the MAX6878/ MAX6879 feature two externally adjustable IN_ undervoltage lockout (UVLO) thresholds (SET1, SET2, SET3) to enable sequencing/tracking functionality. The undervoltage threshold for each IN_ supply is set with an external resistor-divider from each IN_ to SET_ to ground (see Figure 9). All SET_ inputs must be above the internal SET_ threshold (0.5V) to enable tracking/sequencing functionality. Use the following formula to set the UVLO threshold:

$$V_{IN} = V_{TH} (R1 + R2) / R2$$

where $V_{IN_}$ is the undervoltage lockout threshold and V_{TH} is the 500mV SET threshold.

Margin Input (MARGIN)

MARGIN allows system-level testing while power supplies are below the normal ranges as adjusted by the SET_ inputs. Drive MARGIN low before varying system

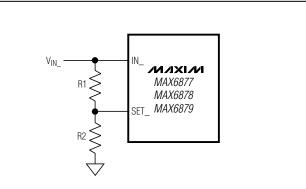


Figure 9. Setting the Undervoltage (UVLO) Thresholds

voltages below the adjusted thresholds to avoid signaling an error. The state of PG/RST and FAULT outputs does not change while MARGIN is low. PG/RST, FAULT, and all monitoring functions are disabled while MARGIN is low. MARGIN makes it possible to vary the supplies without a need to adjust the thresholds to prevent tracker/sequencer alerts or faults. Drive MARGIN high or leave it unconnected for normal operating mode.

Slew-Rate Control Input (SLEW)

The reference ramp voltage slew rate during any controlled power-up/down phase can be programmed in the 90V/s to 950V/s range by connecting a capacitor (C_{SLEW}) from SLEW to ground. Use the following formula to calculate the typical slew rate:

Slew Rate = (9.35 x 10⁻⁸)/ C_{SLEW}

where slew rate is in V/s and $C_{\mbox{SLEW}}$ is in farads.

The capacitor at C_{SLEW} also sets the \overline{FAULT} timeout period (t \overline{FAULT}) and \overline{FAULT} retry timeout period (t_{RETRY}) (see Table 1).

For example, if C_{SLEW} = 100pF, we have t_{RETRY} = 350ms, t_{FAULT} = 21.91ms, slew rate = 935V/s. For example, if C_{SLEW} = 1nF, we have t_{RETRY} = 3.5s, t_{FAULT} = 219ms, slew rate = 93.5V/s.

 C_{SLEW} is the capacitor on the SLEW pad, and must be large enough to make the parasitic capacitance negligible. C_{SLEW} should be in the range of 100pF < C_{SLEW} < 1nF.

Table 1. CSLEW Timing Formulas

TIME PERIOD	FORMULAS
Slew Rate	(9.35 x 10 ⁻⁸) / C _{SLEW}
t RETRY	3.506 x 10 ⁹ x C _{SLEW}
^t FAULT	2.191 x 10 ⁸ x C _{SLEW}

Limiting Inrush Current

The capacitor connected at SLEW controls the OUT_S slew rate, thus controlling the inrush current required to charge the load capacitor at the outputs (OUT_). Using the programmed slew rate, limit the inrush current by using the following formula:

$I_{INRUSH} = C_{OUT} \times SR$

where $I_{\ensuremath{\mathsf{INRUSH}}}$ is in amperes, $C_{\ensuremath{\mathsf{OUT}}}$ is in farads, and SR is in V/s.

Delay Time Input (DELAY)

To adjust the desired delay period (tDELAY) before tracking/sequencing is enabled, connect a capacitor (CDELAY) between DELAY to ground (see Figures 1 to 8). The selected delay time is also enforced when EN/UV rises from low to high when all the input voltages (IN1/IN2/IN3) are present. Use the following formula to calculate the delay time:

 $t_{DELAY} = 200\mu s + (500k\Omega \times C_{DELAY})$

where t_{DELAY} is in μs and C_{DELAY} is in farads. Leave DELAY unconnected for the default 200 μs delay.

Timeout Period Input (TIMEOUT)

These devices feature a PG/RST timeout period. Connect a capacitor (CTIMEOUT) from TIMEOUT to ground to program the PG/RST timeout period. After all OUT_ outputs exceed their IN_ referenced thresholds (VTH_PG), PG/RST remains low for the selected timeout period, tTIMEOUT (see Figure 3):

 $t_{TIMEOUT} = 200\mu s + (500k\Omega \times C_{TIMEOUT})$

where tTIMEOUT is in μs and CTIMEOUT is in farads. Leave TIMEOUT unconnected for the default 200 μs timeout delay.

Logic-Enable Input (EN/UV)

Drive logic EN/UV input above V_{EN_R} to initiate voltage tracking/sequencing during the power-up operation. Drive logic EN/UV below V_{EN_F} to initiate tracking power-down operation. Connect EN/UV to an external resistor-divider network to set the external undervoltage lockout threshold.

OUT1/OUT2/OUT3

The MAX6877 monitors three and MAX6878/MAX6879 monitor two OUT_ outputs to control the tracking/ sequencing performance. After the internal supply (ABP) exceeds the minimum voltage (2.7V) requirements, $EN/UV > V_{EN_R}$, and IN1/IN2/IN3 are all greater than their adjusted SET_ thresholds, OUT1/OUT2/OUT3 begin to track or sequence.

During fault conditions, an internal pulldown resistor (100Ω) on OUT_ is enabled to help discharge load capacitance (100Ω) is connected for fast power-down control).

Outputs GATE

The MAX6877/MAX6878/MAX6879 feature up to three GATE_ outputs to drive up to three external n-channel FET gates. The following conditions must be met before GATE_ begins enhancing the external n-channel FET_:

- 1) All SET_ inputs (SET1–SET3) are above their 0.5V thresholds.
- 2) At least one IN_ input or V_{CC} is above the minimum operating voltage (2.7V).

3) $EN/\overline{UV} > 1.25V.$

At power-up mode, GATE_ voltages are enhanced by control loops so that all OUT_ voltages track together at a capacitor-adjusted slew rate. Each GATE_ is internally pulled up to 5V above its relative IN_ voltage to fully enhance the external n-channel FET when power-up is complete.

FAULT The MAX6877/MAX6878/MAX6879 include an opendrain, active-low tracking fault alarm output (FAULT). FAULT asserts low when a power-up phase is not completed within the specified fault period or if OUT_ voltages are more than V_{TRK_F}.

The fault time period (t_{FAULT}) is set through the capacitor at SLEW (C_{SLEW}). Use the following formula to estimate the fault timeout period:

$$t_{FAULT} = 2.191 \times 10^8 \times C_{SLEW}$$

Power-supply tracking operation should be completed within the selected fault timeout period (tFAULT). The total tracking time is extended when the devices must vary the control slew rate to allow slow supplies to catch up. If the external FET is too small (R_{DS} is too high for the selected load current and IN_ source current), the OUT_ voltage may never reach the control ramp voltage. For a slew rate of 935V/s, a fault is signaled if all outputs have not stabilized within 22ms. For a slew rate of 93.5V/s, a fault is signaled if tracking takes too long (more than 219ms).

During power-up, only the condition, $OUT_ < ramp - V_{TRK}$, is monitored in order to stop the ramp. However, both conditions $OUT < ramp - V_{TRK}F$ and $OUT_ > ramp + V_{TRK}F$ cause a fault. During power-down, only the condition $OUT > ramp + V_{TRK}$ is checked in order to stop the ramp. However, both conditions $OUT_ < ramp - V_{TRK}F$ and $OUT_ > ramp + V_{TRK}F$ cause a fault (see Figure 10). OUT1, OUT2, and OUT3 are tracked within $V_{TRK}F$ (mV) (power-up tracking and power-down), and if they differ by more than 2 x $V_{TRK}F$ a fault condition is asserted.

Retry time period (t_{RETRY}) is defined as 16 x t_{FAULT} . To calculate the retry time period use the following formula:

$$t_{RETRY} = 3.506 \times 10^9 \times C_{SLEW}$$

where t_{RETRY} is in μ s and C_{SLEW} is in farads.

Autoretry and Latch-Off Functions (LTCH/RTR)

The MAX6877/MAX6878/MAX6879 feature latch-off or autoretry modes to power-on again after a fault condition has been detected. Connect LTCH/RTR to ground to set the latch-off mode. To select autoretry mode, connect LTCH/RTR to ABP or leave unconnected.

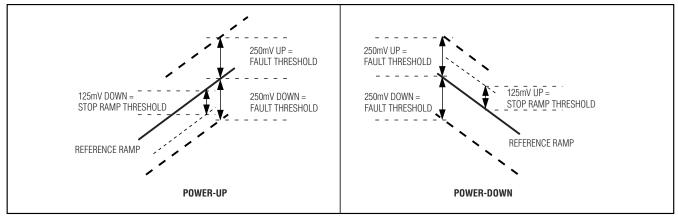


Figure 10. Stop Ramp FAULT Window During Power-Up and Power-Down

When a fault is detected, for a period of tRETRY, GATE_ remains off and the 100 Ω pulldowns are turned on. After the tRETRY period, the device waits tDELAY and retries power-up if all power-up conditions are met (see Figure 8). These include all VSET_ > 0.5V, EN/UV > VEN_R, OUT_ voltages < VTH_PL. The autoretry period, tRETRY, is a function of CSLEW; see Table 1.

When the device is in latch mode and a fault occurs, FAULT asserts and all outputs are latched off. To unlatch OUT_ after a fault disappears, cycle EN/UV or cycle V_{CC} and the inputs (IN_) below the 2.7V UVLO threshold. After EN/UV goes high, the device waits a t_{RETRY} period then tries to power-up again. If V_{CC} and all IN_ are cycled below 2.7V, the device tries to powerup immediately.

Power-Good Output (PG/RST)

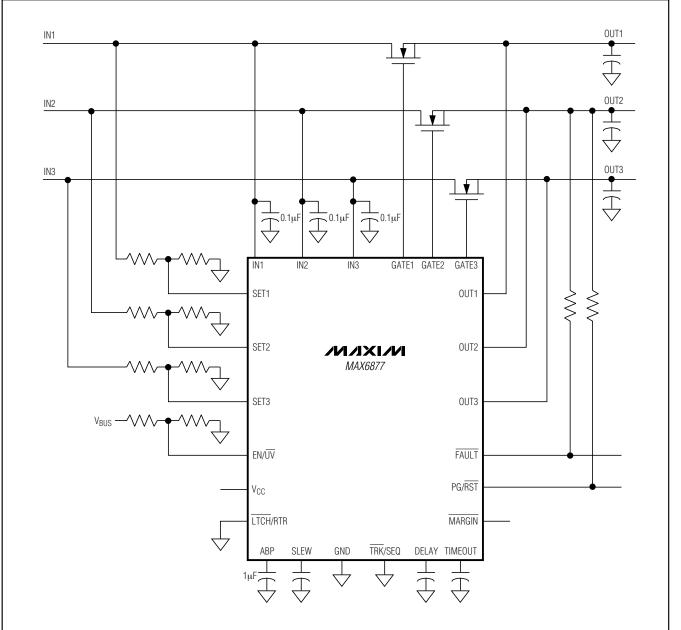
The MAX6877/MAX6878 include a power-good (PG/RST) output. PG/RST is an open-drain output and requires an external pullup resistor.

All the OUT_ outputs must exceed their IN_ referenced thresholds (IN_ x V_{TH_PG}) for the selected reset timeout period t_{TIMEOUT} (see the *TIMEOUT Period Input* section) before PG/RST asserts high. PG/RST stays low for the selected reset timeout period (t_{TIMEOUT}) after all the OUT_ voltages exceed their IN_ referenced thresholds. PG/RST goes low when V_{SET} < V_{TH} or V_{EN/UV} < V_{EN_R} (see Figure 3).

Applications Information

MOSFET Selection

The external pass MOSFET is connected in series with the sequenced power-supply source. Since the load current and the MOSFET drain-to-source impedance (R_{DS}) determine the voltage drop, the on characteristics of the MOSFET affect the load supply accuracy. The MAX6877/MAX6878/MAX6879 fully enhance the external MOSFET out of its linear range to ensure the lowest drain-to-source on-impedance. For highest supply accuracy/lowest voltage drop, select a MOSFET with an appropriate drain-to-source on-impedance with a gate-to-source bias of 4.5V to 6.0V.

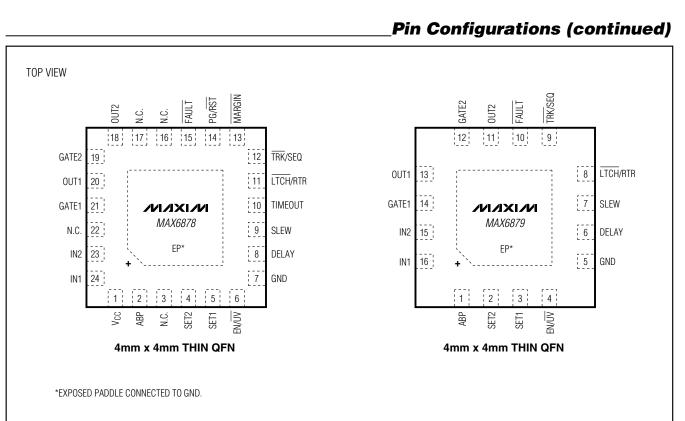

Layout and Bypassing

For better noise immunity, bypass each of the IN_ inputs to GND with 0.1μ F capacitors installed as close to the device as possible. Bypass ABP to GND with a 1μ F capacitor installed as close to the device as possible. ABP is an internally generated voltage and must not be used to supply power to external circuitry.

_Selector Guide

PART	CHANNEL	TIMEOUT SELECTABLE	PG/RST	MARGIN	Vcc
MAX6877	3	Yes	Yes	Yes	Yes
MAX6878	2	Yes	Yes	Yes	Yes
MAX6879	2	No	No	No	No

Typical Application Circuit

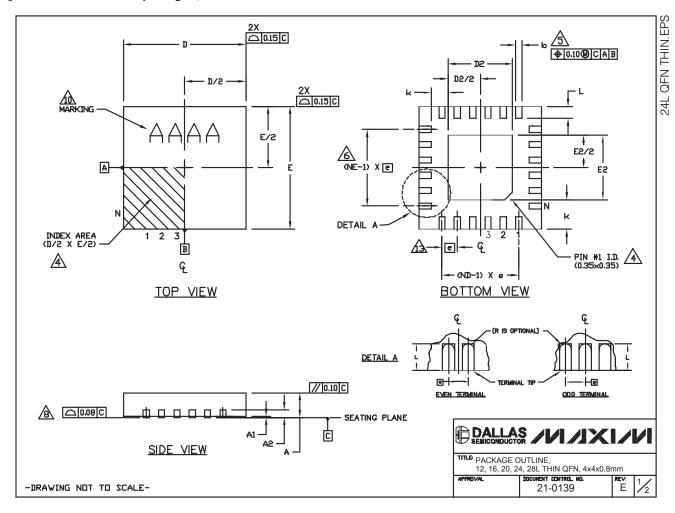


_Ordering Information (continued)

Chip Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX6878ETG+	-40°C to +85°C	24 Thin QFN	T2444-4
MAX6879ETE+	-40°C to +85°C	16 Thin QFN	T1644-4

+Denotes lead-free package.



PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				СОМ	10N	DIME	INSIE	SNC								E	XPDS	SED	PAD	VAR	IATI	DNS	
PKG	12	2L 4×	:4	16	5L 4x	4	20	L 4x	4	2	4L 4×	< 4	28	3L 4×	(4	PKG.		D2			E2		DOWN BONDS
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MEN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	PKG. CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLOVI
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.90	0.70	0.75	0.80	0.70	0.75	0.80	T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20.0	0.05		0.02	0.05	0,0	0.02	0.05	0.0	0.02	0.05	T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	0).20 RE	F	0	.20 RE	F	0.	20 RE	F	0	.20 RE	F	0	20 RE	F	T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b	0.25			0.25	0.30	0.35	0.20		0.30	0.18	0.23	0.30	0.15	0.20	0.25	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E		4.00	4.10	3.90	4.00	4.10	3.90		4.10	3.90		4.10	3.90	4.00	4.10	T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e	-	D.80 BS	ic. _		65 BS			50 BS	c. _).50 BS	;c. 		1.40 BS	ж. –	T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
<u>k</u>	0.25	0.55	- 0.65	0.25 0.45	- 0.55	- 0.65	0.25		- 0.65	0.25	0.40	0.50	0.25	- 0.40	0.50	T2444-3	2.45	2.60	2.63	2.45	2.60 2.60	2.63 2.63	YES ND
<u>L</u> N	0.40	12	0.60	0.43	16	0.63	0.43	20	0.63	0.30	24	10.00	0.30	28	0.50	T2444-4 T2844-1	2.45	2.60 2.60	2.63 2.70	2.45 2.50	2.60	2.63	
		3			4			5			6			7		12644-L	6.30	C.00	C./U	E'20	C.00	LC'10	
NE		3			4			5			6			7									
ledec Var.		VGGB			VGGC		١	/GGD-1	1		WGGD-	-2		VGGE									
2.	dimens All di N IS T	Mensio He tot	ns are Tal nui	in Mi Meer C	luneti Df teri	ERS. AN MINALS.	IGLES	ARE IN	DEGR	EES.		ALL CO.		70									
1. 2. 3.	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO	Mensio He tot Rminal 15—1 Si Dne ine	NS ARE TAL NUM #1 ID PP-012 DICATED	in Mi MBER (Entifie . Deta . The	LUMETI DF TERI IR AND ILS OF TERMIN	ERS. AM MINALS. TERMIN TERMIN IAL #1	NGLES NAL NU IAL #1 IDENTIF	ARE IN Imberii Identii Fier M	I DEGR NG COI FIER AI AY BE	ees. Nventk Re opt Eithef	TIONAL, ₹ A MC	BUT N	ust be Marki	ED FEA									
1. 2. 3. (A)	DIMENS ALL DI N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI	MENSION HE TOT SEMINAL 15-1 SI DNE INE SION 6 TERMIN/ D NE F	NS ARE TAL NUM #1 ID PP-012 DICATED APPLIE AL TIP, REFER 1	IN MI MBER C ENTIFIE DETA DETA THE S TO I	LUMETE DF TER TERMIN TERMIN METALLI	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE BER OF	NGLES NAL NU IAL #1 IDENTIF RMINAL TERMIN	ARE IN IMBERII IDENTII FIER M. . AND WALS O	I DEGR NG COI FIER AI AY BE IS MEA IS MEA	EES. NVENTIK RE OPT EITHEF SURED	nonal, R A MC BETW	BUT M XLD OR EEN 0.1	UST BE MARKI 25 mm	ed fea AND									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT	MENSION HE TOT RMINAL 15-1 SI 50NE INE SION B TERMIN, D NE F ULATION	NS ARE TAL NUM PP-012 DICATED APPLIE AL TIP, REFER 1 N IS PC	in Mi Meer (Entifie Deta Deta The S To I S To I SSIBLE	illineti Df teri Ils of Termin Metalli I numb	ers. A Minals. Termin Termin Val #1 Zed te Ber of Symme	NGLES NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL	ARE IN IDENTI FIER M. . AND VALS O FASHK	I DEGR NG COI FIER AI AY BE IS MEA IS MEA	ees. Nventik Re opt Eithef Sured H d a	nonal, R A No Betwi ND E S	BUT M SLD OR EEN 0.1 SIDE RI	UST BE MARKI 25 mm ESPECTI	E LOCAT ED FEA I AND IVELY.	TURE.								
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DIM N IS THE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI COPLAN	MENSION HE TOT STANINAL 15-1 SI DNE INE SION B TERMIN/ D NE F ULATION NARITY	NS ARE TAL NUM PP-012 DICATED APPLIE AL TIP, REFER 1 N IS PC APPLIE	IN MI MBER (ENTIFIE DETA DETA THE S TO I S TO I S TO I	ILLIMETI DF TERI TERMIN METALLI NUMB IN A	ers. A minals. Termin Mal #1 Zed te Symme Posed	NGLES NAL NU IAL #1 IDENTIF IRMINAL TERMIN TRICAL HEAT S	ARE IN IDENTII FIER M. . AND WALS O FASHK SINK S	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON.	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	ND E S	BUT M DLD OR EEN 0. SIDE RI HE TER	UST BE MARKI 25 mm ESPECTI	E LOCAT ED FEA AND IVELY.	TURE.								
1. 2. 3. ▲ ▲	DIMENS ALL DIM N IS THE THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPH COPLAY DRAWIN	MENSION HE TOT RMINAL 15-1 SI DNE INE SION 6 TERMIN D NE F ULATION NARITY NG CON	NS ARE TAL NUM #1 ID PP-012 DICATED APPLIE AL TIP. REFER 1 N IS PC APPLIE IFORMS	IN MI MBER (ENTIFIE DETA THE STO I SSIBLE STO I TO JE	ILLIMETI DF TER TER AND ILS OF TERMIN METALLI NUMB IN A THE EXI DEC M	ers. A Minals. Termin Termin AL #1 ZED TE SYMME POSED 0220,	NGLES A NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT	ARE IN IDENTI FIER M. AND VALS O FASHK SINK S	I DEGR NG CO FIER AI AY BE IS MEA IN EAC ON. LUG A T2444	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	ND E S	BUT M DLD OR EEN 0. SIDE RI HE TER	UST BE MARKI 25 mm ESPECTI	E LOCAT ED FEA AND IVELY.	TURE.								
1. 2. 3. 4. 7. 9. 9.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPTI COPLAY MARKING	MENSION HE TOT RMINAL 5-1 SI SONE INE SION & TERMIN/ D NE F ULATION NARITY NG CON G IS FC	NS ARE TAL NUM #1 ID PP-012 DICATED APPLIE AL TIP. REFER 1 N IS PC APPLIE IFORMS DR PACI	IN MI MBER (ENTIFIE DETA DETA THE STO I STO I TO JE KAGE (ILLIMETH DF TER TERMIN METALLI ILS OF TERMIN METALLI ILS NUMB ILS NUMB ILS NUMB ILS NUMB ILS NUMB ILS NUMB ILS NUMB ILS NUMB ILLIMETH ILLI	ERS. AM MINALS. TERMIN TERMIN VAL #1 ZED TE BER OF SYMME POSED 0220, ATION R	NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT	ARE IN IDENTI FIER M. AND VALS O FASHK SINK S	I DEGR NG CO FIER AI AY BE IS MEA IN EAC ON. LUG A T2444	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	ND E S	BUT M DLD OR EEN 0. SIDE RI HE TER	UST BE MARKI 25 mm ESPECTI	E LOCAT ED FEA AND IVELY.	TURE.								
1. 2. 3. 4. 5. 7. 6. 7. 6. 7. 9. 8. 11. 0	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT COPLAN MARKING COPLAN	MENSION HE TOT RMINAL 15-1 SI DNE INE SION & TERMIN D NE F ULATION NARITY NG CON G IS FC ARITY S	NS ARE TAL NUM #1 ID PP-012 DICATED APPLIE APPLIE IFORMS DR PACIS SHALL N	IN MI MERR (ENTIFIE DETA THE S TO I S TO I S TO I S TO I TO JE KAGE (NOT EX	ILLINETI OF TERI TERMIN METALLI IN A THE EXI TOPEC M DRIENTA CEED (ERS. AMMINALS. TERMIN TERMIN MAL #1 ZED TE ER OF SYMME POSED 0220, ATION R 0.08mm	NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT	ARE IN IDENTI FIER M. AND VALS O FASHK SINK S	I DEGR NG CO FIER AI AY BE IS MEA IN EAC ON. LUG A T2444	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	ND E S	BUT M DLD OR EEN 0. SIDE RI HE TER	UST BE MARKI 25 mm ESPECTI	E LOCAT ED FEA AND IVELY.	TURE.								
1. 2. 3. 4. 7. 9. 11. 0 12. W	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPTI COPLAY MARKING	MENSION HE TOT RMINAL 55-1 SI 50-1 SI	NS ARE TAL NUM #1 ID PP-012	IN MI MBER (ENTIFIE DETAIL DETAIL THE STO I SSIBLE STO I TO JE KAGE (IOT EX EXCEE D BE A	ILLIMETH DF TERMIN ILLS OF TERMIN METALLI ILLS OF TERMIN METALLI ILLS OF TERMIN METALLI ILLS OF TERMIN METALLI ILLS OF TERMIN ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLIMETH ILLINETH ILI	ERS. AMMINALS. TERMIN TERMIN IAL #1 ZED TE BER OF SYMME POSED 0220, ATION R 0.08mm 0.08mm 0.08mm	IGLES A NAL NUL IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	ARE IN IDENTI FIER M. AND VALS O FASHK SINK S FOR NCE ON	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. ELUG AS T2444- NLY.	EES. NVENTIK RE OPT ETTHEF SURED H D A S WELL -3, T2	ND E S	BUT M DLD OR EEN 0. SIDE RI HE TER	UST BE MARKI 25 mm ESPECTI MINALS 12844-	E LOCAT ED FEA I AND IVELY.	TURE.	m		SUDUC	AS J			X	
1. 2. 3. 4. 7. 9. 11. 0 12. W	DIMENS ALL DIM N IS T THE TE JESD 90 THE ZC DIMENS FROM ND ANI DEPOPI COPLAY MARKING COPLAN/ WARPAGE LEAD CE	MENSION HE TOT RMINAL 55-1 SI 50-1 SI	NS ARE TAL NUM #1 ID PP-012	IN MI MBER (ENTIFIE DETAIL DETAIL THE STO I SSIBLE STO I TO JE KAGE (IOT EX EXCEE D BE A	ILLIMETH DF TERMIN ILLS OF TERMIN METALLI ILLS OF TERMIN METALLI ILLS OF TERMIN METALLI ILLS OF TERMIN METALLI ILLS OF TERMIN METALLI ILLINETH ILLI	ERS. AMMINALS. TERMIN TERMIN IAL #1 ZED TE BER OF SYMME POSED 0220, ATION R 0.08mm 0.08mm 0.08mm	IGLES A NAL NUL IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	ARE IN IDENTI FIER M. AND VALS O FASHK SINK S FOR NCE ON	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. ELUG AS T2444- NLY.	EES. NVENTIK RE OPT ETTHEF SURED H D A S WELL -3, T2	ND E S	BUT M DLD OR EEN 0. SIDE RI HE TER	UST BE MARKI 25 mm ESPECTI MINALS 12844-	E LOCAT ED FEA I AND IVELY.	TURE.	m	PAC	KAGE	OUTLI				

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

24

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2005 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.