

D Series Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V) at T _J max.	450			
R _{DS(on)} max. at 25 °C (Ω)	$V_{GS} = 10 V$	0.17		
Q _g max. (nC)	88			
Q _{gs} (nC)	12			
Q _{gd} (nC)	23			
Configuration	Single			

TO-247AC

N-Channel MOSFET

FEATURES

- Halogen-free According to IEC 61249-2-21
 Definition
- Optimal Design
 - Low Area Specific On-Resistance
 - Low Input Capacitance (Ciss)
 - Reduced Capacitive Switching Losses
 - High Body Diode Ruggedness
 - Avalanche Energy Rated (UIS)
- Optimal Efficiency and Operation
 - Low Cost
 - Simple Gate Drive Circuitry
 - Low Figure-of-Merit (FOM): Ron x Qa
 - Fast Switching
- Compliant to RoHS Directive 2011/65/EU

APPLICATIONS

- Consumer Electronics
 - Displays (LCD or Plasma TV)
- Lighting
- Industrial
 - Welding
 - Induction Heating
 - Motor Drives
 - Battery Chargers
- SMPS

ORDERING INFORMATION	
Package	TO-247AC
Lead (Pb)-free	SiHG25N40D-E3
Lead (Pb)-free and Halogen-free	SiHG25N40D-GE3

ABSOLUTE MAXIMUM RATINGS ($T_c = 25 \text{ °C}$, unless otherwise noted)						
PARAMETER	SYMBOL	LIMIT	UNIT			
Drain-Source Voltage	V _{DS}	400				
Gate-Source Voltage	V _{GS}	± 30	V			
Gate-Source Voltage AC (f > 1 Hz)		30				
Continuous Drain Current (T 150 °C)	$T_{\rm C} = 25 ^{\circ}{\rm C}$		25			
Continuous Drain Current ($T_J = 150 \ ^\circ$ C)	V_{GS} at 10 V $T_{C} = 25 \text{ °C}$ $T_{C} = 100 \text{ °C}$	Ι _D	16	А		
Pulsed Drain Current ^a	I _{DM}	78				
Linear Derating Factor		2.2	W/°C			
Single Pulse Avalanche Energyb	E _{AS}	556	mJ			
Maximum Power Dissipation	PD	278	W			
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C			
Drain-Source Voltage Slope	dV/dt	24	V/ns			
Reverse Diode dV/dtd		0.6	v/ns			
Soldering Recommendations (Peak Temperature)		300 ^c	°C			

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 2.3 mH, R_g = 25 Ω , I_{AS} = 17 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D$, starting $T_J = 25$ °C.

S12-0625-Rev. B, 26-Mar-12

www.vishay.com

SHA

SiHG25N40D

Vishay Siliconix

PARAMETERSYMBOLTYP.MAX.UNITMaximum Junction-to-Ambient R_{h_JA} -40-C/WMaximum Junction-to-Case (Drain) R_{h_JC} -0.45-C/WSPECIFICATIONS (T_J = 25 °C, unless otherwise noted)PARAMETERSYMBOLTEST CONDITIONSMin.TYP.MAX.StaticDrain-Source Breakdown Voltage V_{DS} $V_{GS} = 0 V$, $I_D = 250 \mu A$ 400Object ficient $\Delta V_{DS}/T_J$ Reference to 25 °C, $I_D = 250 \mu A$ 400Gate-Source Threshold Voltage (N) V_{OS} $V_{DS} = 400 V$, $V_{GS} = 0 20 \mu A$ 3-55Gate-Source LeakageI Gass $V_{DS} = 400 V$, $V_{GS} = 0 V$, $T_J = 125 °C$ -11Drain-Source On-State Resistance $R_{DS(n)}$ $V_{DS} = 10 V$ $I_D = 13 A$ -0.140.17Forward Transconductance g_{fs} $V_{DS} = 10 V$ $I_D = 13 A$ -110DynamicIppt Capacitance C_{rss} $V_{GS} = 10 V$, $I_D = 13 A$ -1177-Iput Capacitance Q_{gs} $Q_{gs} = 10 V$ $I_D = 13 A$, $V_{DS} = 320 V$ -11-Output Capacitance C_{rss} $V_{GS} = 10 V$, $I_D = 13 A$, $V_{DS} = 320 V$ -11-23-Iput Capacitance Q_{gs} Q_{gs} $V_{GS} = 10 V$, $I_D = 13 A$, $V_{DS} = 320 V$ -122			
Maximum Junction-to-Case (Drain) Rusc - 0.45 °C/W SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) Test conditions Min. TYP. MAX. Static Drain-Source Breakdown Voltage VDS VGS = 0 V, ID = 250 µA 400 - - Ops Temperature Coefficient AV_{DS}/T_J Reference to 25 °C, Ip = 250 µA 3 - - ± 100 Zero Gate-Source Threshold Voltage (N) VGS(m) VDS = VGS = ± 30 V - - ± 100 Zero Gate Voltage Drain Current IDSS VGS = 10 V ID = 13 A - 0.14 0.17 Forward Transconductance Ggs VDS = 50 V, Ig = 13 A - 0.14 0.17 - Iput Capacitance Ciss VGS = 10 V ID = 13 A - 0.14 0.17 Output Capacitance Ciss VGS = 10 V ID = 13 A - 1.707 - Iput Capacitance Ciss VGS = 10 V ID = 13 A, VDS = 320 V, ID = 13 A - 1.707 - Gate-Source Charge Qgg Qg Gate-Source Charge Qg = 0 V, VDS = 10 V, ID = 13 A, VDS = 320 V, ID = 13			
Maximum Junction-to-Case (Drain) $R_{th,JC}$ -0.45SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)PARAMETERSYMBOLTEST CONDITIONSMIN.TYP.MAX.StaticDrain-Source Breakdown Voltage V_{DS} $V_{GS} = 0 V$, $I_D = 250 \mu A$ 400Operature Coefficient $\Delta V_{DS}/T_J$ Reference to 25 °C, $I_D = 250 \mu A$ 3-5Gate-Source Threshold Voltage (N) $V_{GS}(m)$ $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ 3-5Gate-Source Leakage I_{GSS} $V_{GS} = 130 V$ ± 100 Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 400 V, V_{GS} = 0 V$ 1Drain-Source On-State Resistance $R_{DS(m)}$ $V_{GS} = 10 V$ $I_D = 13 A$ -0.140.17Forward Transconductance g_{fs} $V_{DS} = 50 V, I_D = 13 A$ -1.440.140.17Input Capacitance C_{css} $V_{GS} = 10 V$ $I_D = 13 A, V_{DS} = 320 V$ -1.2-Output Capacitance C_{css} $V_{GS} = 10 V$ $I_D = 13 A, V_{DS} = 320 V$ -1.2-Input Capacitance C_{css} $V_{GS} = 10 V$ $I_D = 13 A, V_{DS} = 320 V$ -1.2-Input Capacitance C_{rss} Q_{GS} 1.0 V-1.2-1.2-Gate-Drain Charge Q_{gs} Q_{gs} 1.0 V, $R_{g} = 24.6 \Omega$ -4.4488 <th< td=""><td></td></th<>			
$\begin{array}{ c c c c c c } \hline PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. \\ \hline Static \\ \hline \\ \hline \\ \hline \\ Static \\ \hline \\ \hline \\ Drain-Source Breakdown Voltage V_{DS} V_{DS} V_{QS} = 0 V, I_D = 250 \mu A 400 - 0.5 - 0.5 \\ \hline \\ \hline \\ \hline \\ V_{DS} Temperature Coefficient \Delta V_{DS}/T_J Reference to 25 °C, I_D = 250 \mu A - 0.5 - 0.5 \\ \hline \\ \hline \\ Gate-Source Threshold Voltage (N) V_{QS(th)} V_{QS(th)} V_{DS} = V_{QS}, I_D = 250 \mu A - 0.5 - 0.5 \\ \hline \\ \hline \\ \hline \\ Gate-Source Leakage I_{QSS} V_{QS} = 400 V, V_{QS} = 0 V - 0 - 1 \\ \hline \\ \hline \\ Zero Gate Voltage Drain Current I_{DSS} V_{DS} = 400 V, V_{QS} = 0 V - 0 - 1 \\ \hline \\ \hline \\ \hline \\ Porward Transconductance I_{RDS(on)} V_{QS} = 10 V I_{D} = 13 A - 0.14 0.17 \\ \hline \\ \hline \\ \hline \\ \hline \\ Output Capacitance C_{Gas} V_{DS} = 100 V, I_D = 13 A - 0.14 0.17 \\ \hline \\ \hline \\ \hline \\ \hline \\ Cutput Capacitance C_{Gas} C_{Gas} V_{DS} = 10 V, I_D = 13 A - 0.14 0.17 \\ \hline \\ Cutput Capacitance C_{Gas} C_{Gas} To Y I_{DS} = 100 V, I_D = 13 A - 0.14 0.17 \\ \hline \\ $	°C/W		
$\begin{tabular}{ c c c c c c } \hline PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. \hline Static $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$			
$\begin{tabular}{ c c c c c c } \hline PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. \hline Static $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UNIT		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V/°C		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nA		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μA		
Forward Transconductance g_{fs} $V_{DS} = 50 \text{ V}$, $I_D = 13 \text{ A}$ -7.4-DynamicInput Capacitance C_{ISS} $V_{GS} = 0 \text{ V}$, $V_{DS} = 100 \text{ V}$, $f = 1 \text{ MHz}$ -1707-Output Capacitance C_{oss} $V_{GS} = 100 \text{ V}$, $f = 1 \text{ MHz}$ -1707-Reverse Transfer Capacitance C_{rss} $r = 1 \text{ MHz}$ -19-Total Gate Charge Q_g $V_{GS} = 10 \text{ V}$ $I_D = 13 \text{ A}$, $V_{DS} = 320 \text{ V}$ -12-Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 13 \text{ A}$, $V_{DS} = 320 \text{ V}$ -12-Turn-On Delay Time $t_{d(on)}$ $V_{CS} = 10 \text{ V}$ $I_D = 320 \text{ V}$, $I_D = 13 \text{ A}$, $V_{DS} = 320 \text{ V}$ -2142Rise Time t_r $V_{DS} = 320 \text{ V}$, $I_D = 13 \text{ A}$, $V_{GS} = 10 \text{ V}$ -3774Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-1.8-Drain-Source Body Diode Characteristics I_S $MOSFET \text{ symbol}$ showing the integral reverse24	Ω		
DynamicImput CapacitanceC issImput CapacitanceImput Capacitance </td <td>s</td>	s		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Output Capacitance C_{oss} $V_{OS} = 10 \text{ V}$, $f = 1 \text{ MHz}$ -177-Reverse Transfer Capacitance C_{rss} $f = 1 \text{ MHz}$ -19-Total Gate Charge Q_g Q_g $I_D = 13 \text{ A}$, $V_{DS} = 320 \text{ V}$ -4488Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 13 \text{ A}$, $V_{DS} = 320 \text{ V}$ -12-Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 13 \text{ A}$, $V_{DS} = 320 \text{ V}$ -23-Turn-On Delay Time $t_{d(on)}$ $V_{GS} = 10 \text{ V}$, $R_g = 24.6 \Omega$ -2142Rise Time t_f $V_{GS} = 10 \text{ V}$, $R_g = 24.6 \Omega$ -3774Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-1.8-Drain-Source Body Diode Characteristics $MOSFET$ symbol showing the integral reverse-2424	1		
$ \begin{array}{c c c c c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & f = 1 \ \text{MHz} & - & 19 & - \\ \hline Total Gate Charge & Q_g & Q_{gs} & Q_{gs} & V_{GS} = 10 \ \text{V} & I_D = 13 \ \text{A}, \ \text{V}_{DS} = 320 \ \text{V} & - & 23 & - \\ \hline Gate-Drain Charge & Q_{gd} & & I_D = 13 \ \text{A}, \ \text{V}_{DS} = 320 \ \text{V} & - & 23 & - \\ \hline Turn-On \ Delay Time & t_{d(on)} & & & & \\ \hline Rise Time & t_r & V_{DD} = 320 \ \text{V}, \ I_D = 13 \ \text{A}, \ \text{V}_{DS} = 320 \ \text{V}, \ I_D = 13 \ \text{A}, \\ V_{GS} = 10 \ \text{V}, \ \text{R}_g = 24.6 \ \Omega & - & 57 & 86 \\ \hline Turn-Off \ Delay Time & t_f & & & \\ \hline Fall Time & t_f & & & \\ \hline Gate \ Input \ Resistance & R_g & f = 1 \ \text{MHz}, \ \text{open drain} & - & 1.8 & - \\ \hline Drain-Source \ Body \ Diode \ Characteristics & & & \\ \hline Continuous \ Source-Drain \ Diode \ Current & I_S & & \\ \hline MOSFET \ symbol \\ \text{showing the} & & & \\ \hline integral \ reverse & & \\ \hline \end{array} $	pF		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, Pi		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nC		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- ns		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
Gate Input Resistance Rg f = 1 MHz, open drain - 1.8 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Is MOSFET symbol showing the integral reverse - - 24			
Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Is MOSFET symbol showing the integral reverse - - 24			
Continuous Source-Drain Diode Current Is MOSFET symbol showing the integral reverse - - 24	Ω		
showing the integral reverse			
Pulsed Diode Forward Current I _{SM} p - n junction diode - - 78	A		
Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 13 \ A$, $V_{GS} = 0 \ V$ - 1.2	V		
Reverse Recovery Time t _{rr} - 353 -	ns		
Private Product Charge $T_{ij} = 25 \text{ °C}, I_F = I_S = 13 \text{ A},$	μC		
Reverse Recovery Current I_{RBM} dl/dt = 100 Å/µs, $V_R = 20 V$ -4.424-	A		

Document Number: 91484

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

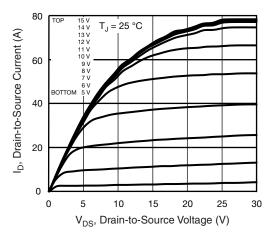


Fig. 1 - Typical Output Characteristics

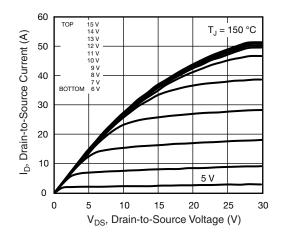


Fig. 2 - Typical Output Characteristics

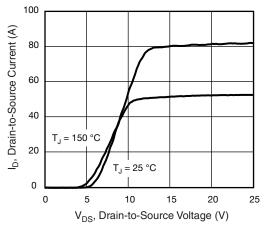


Fig. 3 - Typical Transfer Characteristics

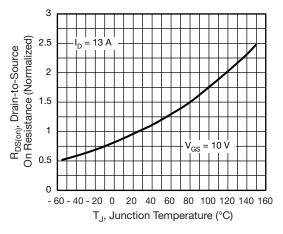


Fig. 4 - Normalized On-Resistance vs. Temperature

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

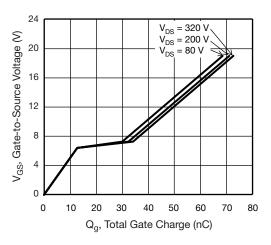


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Document Number: 91484

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

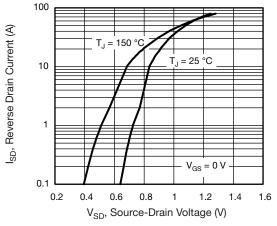
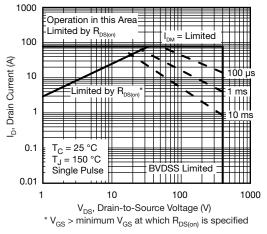
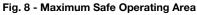




Fig. 7 - Typical Source-Drain Diode Forward Voltage

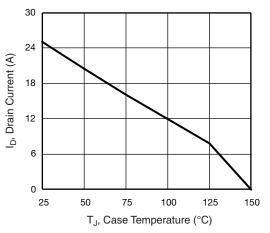


Fig. 9 - Maximum Drain Current vs. Case Temperature

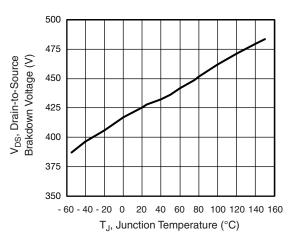
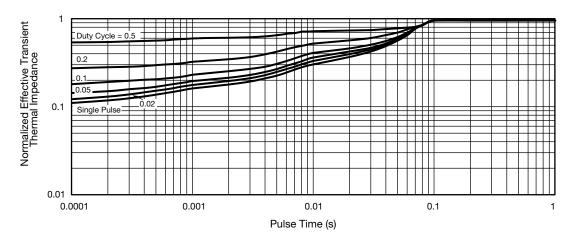



Fig. 10 - Temperature vs. Drain-to-Source Voltage

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

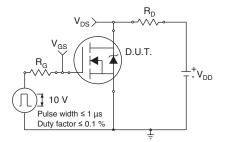


Fig. 12 - Switching Time Test Circuit

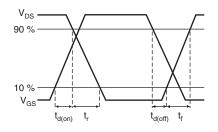


Fig. 13 - Switching Time Waveforms

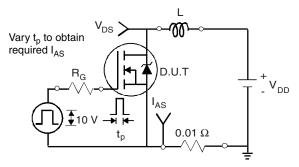


Fig. 14 - Unclamped Inductive Test Circuit

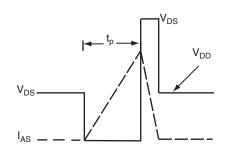


Fig. 15 - Unclamped Inductive Waveforms

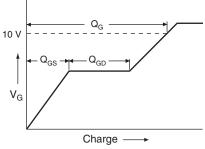
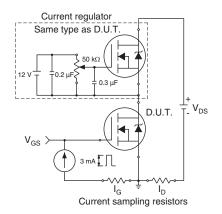
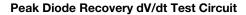
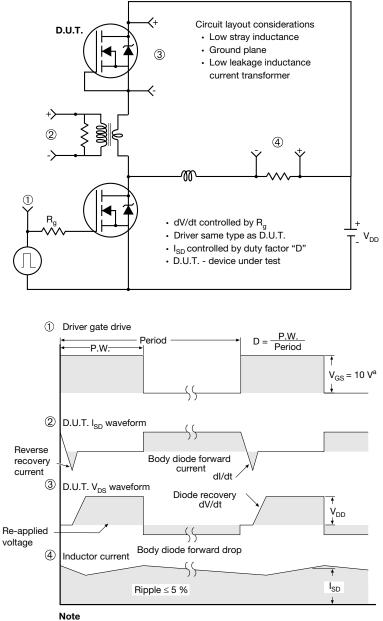


Fig. 16 - Basic Gate Charge Waveform




Fig. 17 - Gate Charge Test Circuit


5

Vishay Siliconix

Vishay Siliconix

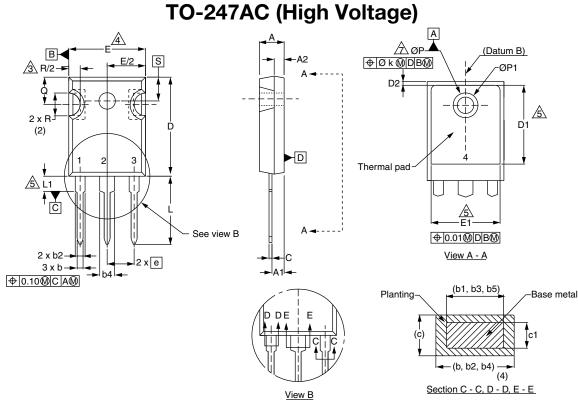

a. $V_{GS} = 5 V$ for logic level devices

Fig. 18 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91484.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

	MILLIMETERS		INCHES			MILLIN	MILLIMETERS		INCHES	
DIM.	MIN.	MAX.	MIN.	MAX.	DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.58	5.31	0.180	0.209	D2	0.51	1.30	0.020	0.051	
A1	2.21	2.59	0.087	0.102	E	15.29	15.87	0.602	0.625	
A2	1.17	2.49	0.046	0.098	E1	13.72	-	0.540	-	
b	0.99	1.40	0.039	0.055	е	5.46	5.46 BSC		0.215 BSC	
b1	0.99	1.35	0.039	0.053	Øk	0.2	254	0.0	010	
b2	1.53	2.39	0.060	0.094	L	14.20	16.25	0.559	0.640	
b3	1.65	2.37	0.065	0.093	L1	3.71	4.29	0.146	0.169	
b4	2.42	3.43	0.095	0.135	N	7.62	7.62 BSC		0.300 BSC	
b5	2.59	3.38	0.102	0.133	ØP	3.51	3.66	0.138	0.144	
С	0.38	0.86	0.015	0.034	Ø P1	-	7.39	-	0.291	
c1	0.38	0.76	0.015	0.030	Q	5.31	5.69	0.209	0.224	
D	19.71	20.82	0.776	0.820	R	4.52	5.49	0.178	0.216	
D1	13.08	-	0.515	-	S	5.51 BSC		0.217 BSC		
ECN: X12- DWG: 597	0167-Rev. B, 1	, 24-Sep-12								

Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

www.vishay.com

2. Contour of slot optional.

Contour of slot optional.
 Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body.
 Thermal pad contour optional with dimensions D1 and E1.

5. Lead finish uncontrolled in L1.

6. Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154").

7. Outline conforms to JEDEC outline TO-247 with exception of dimension c.

8. Xian and Mingxin actually photo.

XIAN MINGXIN

Revision: 24-Sep-12

1 For technical questions, contact: hvm@vishay.com

Document Number: 91360

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.