

Vishay Siliconix

P-Channel 60-V (D-S) MOSFET

FEATURES

•

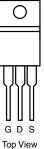
•

TrenchFET[®] Power MOSFET

www.vishay.com/doc?99912

For definitions of compliance please see

100 % UIS Tested


APPLICATIONS

· Load Switch

Material categorization:

PRODU	CT SUMMARY		
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^a	Q _g (Typ.)
- 60	0.0195 at V _{GS} = - 10 V	- 53	76 nC
- 00	0.0250 at V _{GS} = - 4.5 V	- 42	70110

TO-220AB

DRAIN connected to TAB

Ordering Information: SUP53P06-20-E3 (Lead (Pb)-free) SUP53P06-20-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATING	S (T _A = 25 °C, unle	ess otherwise no	oted)	
Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	- 60	v
Gate-Source Voltage		V _{GS}	± 20	v
	T _C = 25 °C		- 53 ^a	
Continuous Drain Current (T 150 °C)	T _C = 70 °C		- 46.8	
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	T _A = 25 °C	I _D	9.2 ^b	A
	T _A = 70 °C		- 8.1 ^b	
Pulsed Drain Current		I _{DM}	- 150	
Avalanche Current Pulse	L = 0.1 mH	I _{AS}	- 45	
Single Pulse Avalanche Energy		E _{AS}	101	mJ
Continuous Source-Drain Diode Current	T _C = 25 °C		69 ^a	Α
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	2.1 ^b	A
	T _C = 25 °C		104.2 ^a	
Maximum Davier Dissis ation	$T_{\rm C} = 70 ^{\circ}{\rm C}$ $P_{\rm D}$ $66.7^{\rm a}$	66.7 ^a		
Maximum Power Dissipation	T _A = 25 °C	۲D –	3.1 ^b	W
	T _A = 70 °C		2 ^b	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^b	Steady State	R _{thJA}	33	40	°C/W
Maximum Junction-to-Case	Steady State	R _{thJC}	0.98	1.2	0/1

Notes:

a. Based on T_C = 25 °C.

Document Number: 68633

S12-2440-Rev. B, 15-Oct-12

b. Surface mounted on 1" x 1" FR4 board.

RoHS COMPLIANT HALOGEN FREE

S

GC

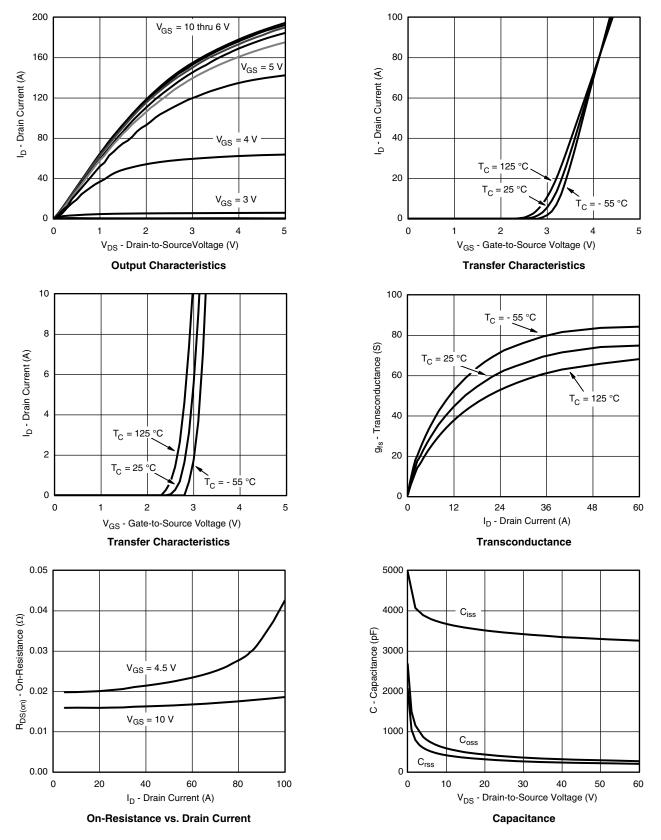
Vishay Siliconix

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = -250 \mu A$	- 60			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = - 250 μΑ		68		m\//%C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	i _D = - 250 μA		- 5.2		mV/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	- 1		- 3	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			± 100	nA	
Zara Cata Valtaga Drain Current	1	$V_{DS} = -60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			- 1		
Zero Gate Voltage Drain Current	IDSS	V_{DS} = - 60 V, V_{GS} = 0 V, T_{J} = 55 °C			- 10	μΑ	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 V, V_{GS} = -10 V$	- 120			А	
	Б	V _{GS} = - 10 V, I _D = - 30 A		0.0160	0.0195	0	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -20 \text{ A}$		0.0200	0.0250	Ω	
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 50 A	20			S	
Dynamic ^b		•		•	•		
Input Capacitance	C _{iss}			3500			
Output Capacitance	C _{oss}	V_{DS} = - 25 V, V_{GS} = 0 V, f = 1 MHz		390		pF	
Reverse Transfer Capacitance	C _{rss}			290			
Tatal Cata Charge	0	$V_{DS} = -30$ V, $V_{GS} = -10$ V, $I_{D} = -55$ A		76	115		
Total Gate Charge	Qg			38	60		
Gate-Source Charge	Q _{gs}	$V_{\rm DS}$ = - 30 V, $V_{\rm GS}$ = - 4.5 V, $I_{\rm D}$ = - 55 A		16		nC	
Gate-Drain Charge	Q _{gd}			19			
Gate Resistance	Rg	f = 1 MHz		5.2		Ω	
Turn-On Delay Time	t _{d(on)}			10	15		
Rise Time	t _r	V_{DD} = - 2 V, R_L = 2 Ω		7	15	1	
Turn-Off Delay Time	t _{d(off)}	$I_{D}\cong$ - 10 A, V_{GEN} = - 10 V, R_{g} = 1 Ω		70	110	ns	
Fall Time	t _f			40	60		
Drain-Source Body Diode Characteristic	s			•			
Continuous Source-Drain Diode Current	ا _S	T _C = 25 °C			- 69	^	
Pulse Diode Forward Current ^a	I _{SM}			- 150	A		
Body Diode Voltage	V _{SD}	I _S = - 30 A		- 1	- 1.5	V	
Body Diode Reverse Recovery Time	t _{rr}			45	68	ns	
Body Diode Beverse Becovery Charge Q		L = 50 A di/dt = 100 A/m T = 05 °C		59	120	nC	
Reverse Recovery Fall Time	ta	I _F = - 50 A, di/dt = 100 A/μs, T _J = 25 °C		29			
Reverse Recovery Rise Time t _b				16		ns	

Notes:

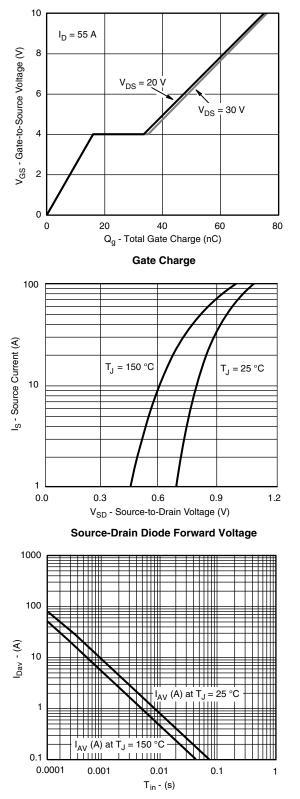
a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

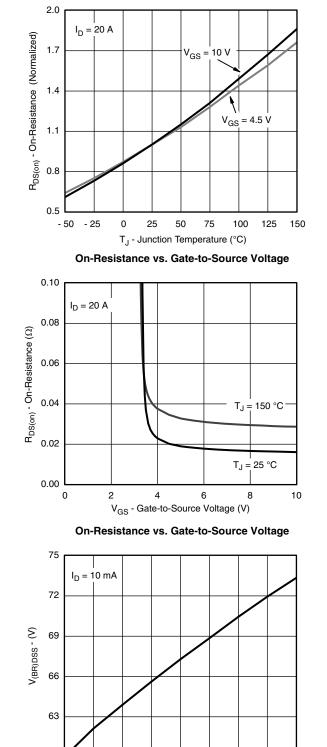

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Document Number: 68633 S12-2440-Rev. B, 15-Oct-12

Vishay Siliconix


Document Number: 68633 For technical questions, contact: <u>pmostechsupport@vishay.com</u> S12-2440-Rev. B, 15-Oct-12

3


Vishay Siliconix

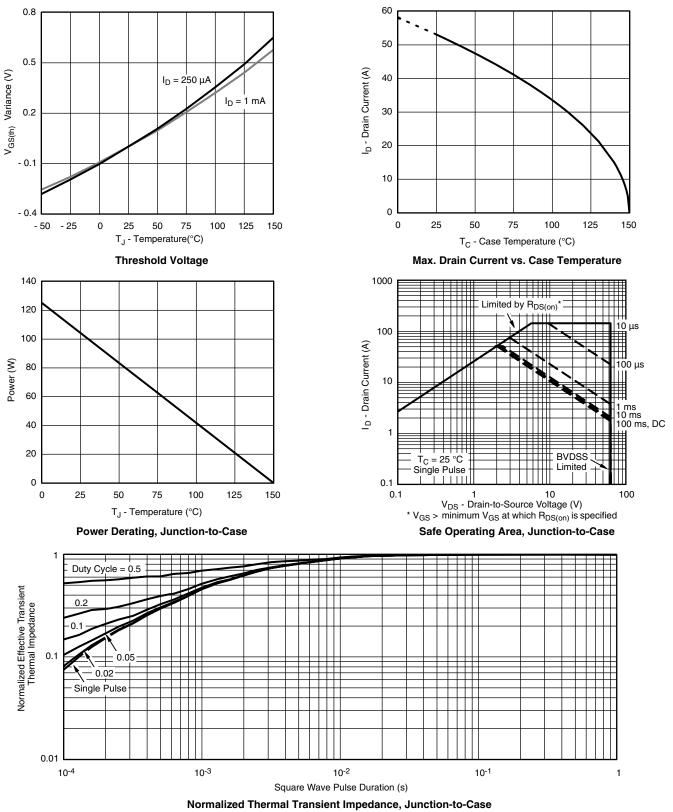
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Single Pulse Avalanche Current Capability vs. Time

60 - 50 - 25 0 25 50 75 100 125 150 T_J - Temperature (°C)

Drain-Source Breakdown Voltage vs. Junction Temperature

Document Number: 68633 S12-2440-Rev. B, 15-Oct-12

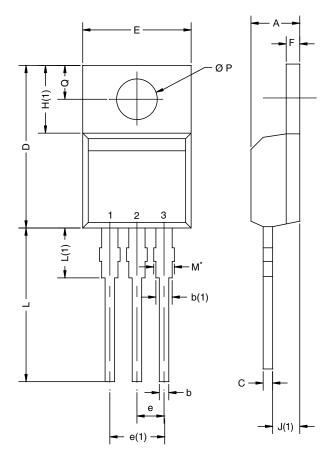

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

5

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

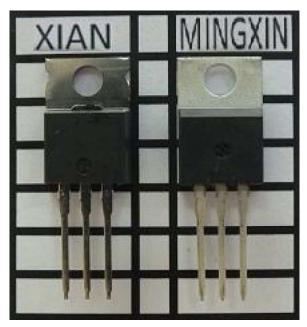
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?68633.


Document Number: 68633 For technical questions, contact: pmostechsupport@vishav.com www.vishay.com S12-2440-Rev. B, 15-Oct-12

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

TO-220AB



DIM.	MILLIN	IETERS	INCHES		
	MIN.	MAX.	MIN.	MAX.	
А	4.25	4.65	0.167	0.183	
b	0.69	1.01	0.027	0.040	
b(1)	1.20	1.73	0.047	0.068	
С	0.36	0.61	0.014	0.024	
D	14.85	15.49	0.585	0.610	
Е	10.04	10.51	0.395	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.09	6.48	0.240	0.255	
J(1)	2.41	2.92	0.095	0.115	
L	13.35	14.02	0.526	0.552	
L(1)	3.32	3.82	0.131	0.150	
ØР	3.54	3.94	0.139	0.155	
Q	2.60	3.00	0.102	0.118	

Notes

 * M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM

Xi'an and Mingxin actual photo

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.