
Vishay

Thick Film Resistor Array

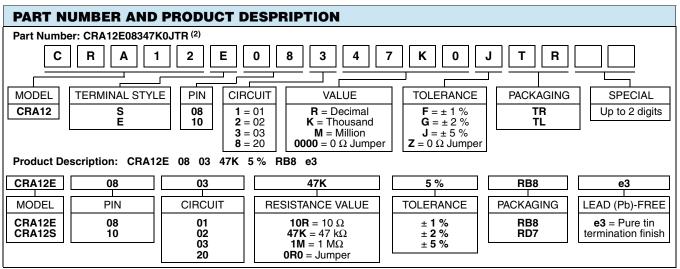
FEATURES

 Convex terminal array available with either scalloped corners (E version) or square corners (S version)

FREE

Document Number: 31003

Revision: 10-Dec-10


- Wide ohmic range: 10R to 1M0
- 8 or 10 terminal package with isolated resistors
- Pure tin solder contacts on Ni barrier layer, provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compliant to RoHS Directive 2002/95/EC
- Halogen-free according to IEC 61249-2-21 definition

STANDARD ELECTRICAL SPECIFICATIONS										
MODEL	CIRCUIT	POWER RATING P _{70 °C} W	LIMITING ELEMENT VOLTAGE MAX. V≅	TEMPERATURE COEFFICIENT ppm/K	TOLERANCE %	$\begin{array}{c} \textbf{RESISTANCE} \\ \textbf{RANGE} \\ \Omega \end{array}$	SERIES			
CRA12E CRA12S	01; 02; 20	0.100	50	± 100	± 1	10R to 1M0	E24; E96			
	03	0.125	50	± 200	± 2; ± 5	TOR TO TIVIO	E24			
		Zero-Ohm-Resisto	or: $R_{\text{max.}} = 50 \text{ m}\Omega$, $I_{\text{max.}} =$	= 1.5 A						

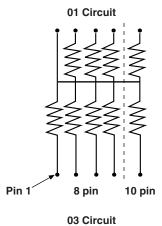
TECHNICAL SPECIFICATIONS									
PARAMETER	UNIT	CRA12E AND CRA12S CIRCUIT 01; 02; 20	CRA12E AND CRA12S CIRCUIT 03						
Rated dissipation at P ₇₀ ⁽¹⁾	W per element	0.1	0.125						
Limiting element voltage U _{max.} AC/DC	V	50							
Insulation voltage U _{ins} (1 min)	V	100							
Insulation resistance	Ω	> 109							
Category temperature range	°C	- 55 to + 155							

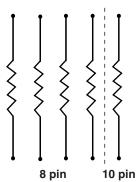
Note

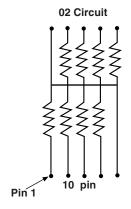
⁽¹⁾ Power rating depends on the max. temperature at the solder point, the component placement density and the substrate material.

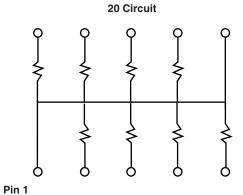
Note

(2) Preferred way for ordering products is by use of the PART NUMBER.

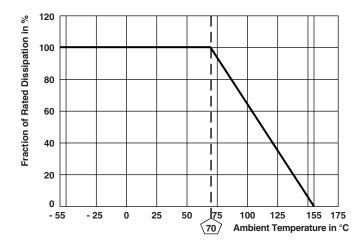

Thick Film Resistor Array


Vishay

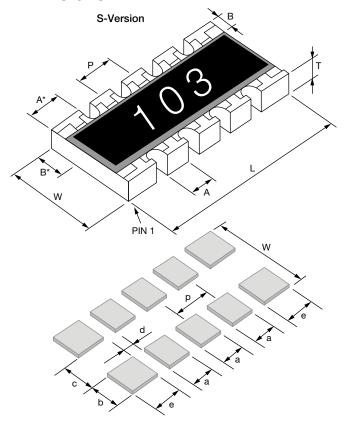

AVAILABLE TYPES AND RANGES								
MODEL	TERMINAL COUNT	CIRCUIT	TEMPERATURE COEFFICIENT	TOLERANCE				
CRA12S	10	01 02 03 20	± 100 ppm/K	10/ 00/ 50/				
CRA12E	08	01 02	± 200 ppm/K	± 1 %; ± 2 %; ± 5 %				
ORATZE	10	03 20						

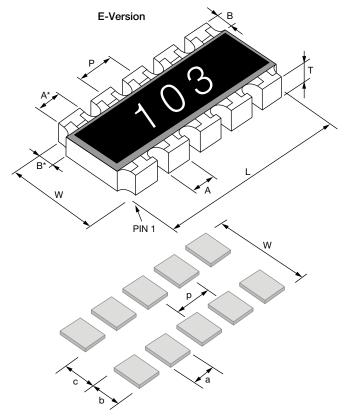

PACKAGING									
MODEL	TAPE WIDTH	DIAMETER	PITCH	PIECES/REEL	BLISTER TAPE ACC. IEC 60286-3, TYPE II				
					PART NUMBER	PRODUCT DESCRIPTION			
CRA12E 08 CRA12E 10 CRA12S 10	12 mm	180 mm/7" 330 mm/13"	8 mm	2000 5000	TR TL	RB8 RD7			

CIRCUIT



Document Number: 31003 Revision: 10-Dec-10


Thick Film Resistor Array


DERATING

DIMENSIONS

MODEL	PIN	DIMENSIONS in millimeters								
WODEL	NO#	L	Α	A *	В	В*	Р	Т	w	
CRA12E	8	5.08	0.79	-	0.51	0.38	1.27	0.55	3.05	
CRA12E	10	6.40	0.79	-	0.51	0.38	1.27	0.55	3.05	
CRA12S	10	6.40	0.79	0.89	0.51	0.38	1.27	0.55	3.05	
	TOL.	± 0.15	± 0.15	± 0.15	± 0.25	± 0.2	± 0.1	± 0.15	± 0.15	

SOLDER PAD DIMENSIONS in millimeters								
c w d p a b e								
WAVE	2.2	4.3	0.57	1.27	0.71	1.05	1.09	
REFLOW	2.2	3.9	0.57	1.27	0.71	0.86	1.09	

Document Number: 31003 Revision: 10-Dec-10

Thick Film Resistor Array

Vishay

Fig. 15	TEST PROCEDURES AND REQUIREMENTS									
Stability for product type: 10 Ω to 1 MΩ	EN 60068-2 CHANGE (△R) (1)									
CRA12E/CRA12S 10 to			1231	PHOGEDONE	STABILITY CLASS 1 OR BETTER					
4.5 -				, ,	10 Ω to	1 MQ				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		CRA12E/CRA12S						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		-	* *	· · · · · · · · · · · · · · · · · · ·				
4.17.2 58 (Td) Solderability Soldera	4.7	-	Voltage proof		No flashover	or breakdown				
A.17.2 S8 (Td) Solderability Soldera	4.13	-	Short time overload		$\pm (0.25 \% R + 0.05 \Omega)$	$\pm (0.5 \% R + 0.05 \Omega)$				
Solder bath method: Sn96.SAg3CuU.5; Good tinning (≥ 95 % covered) no visible damage	4.17.2	58 (Td)	Solderability	non-activated flux; (235 \pm 5) °C; (2 \pm 0.2) s	Good tinning (≥ no visible	95 % covered) damage				
4.32 21 (U _{U3}) Shear (adhesion) 45 N No visible damage 4.33 21 (U _{U1}) Substrate bending Depth 2 mm; 3 times No visible damage 4.19 14 (Na) Rapid change of temperature 30 min. at -55 °C; 30 min at 125 °C 5 cycles ± (0.25 % R + 0.05 Ω) ± (0.25 % R + 0.05 Ω) 4.23 - Dry heat - ± (1 % R + 0.05 Ω) ± (1 % R + 0.05 Ω) 4.23.2 2 (Ba) Damp heat, cyclic 125 °C; 16 h ± (1 % R + 0.05 Ω) ± (2 % R + 0.1 Ω) 4.23.3 30 (Db) Cold 55 °C; 2 9 % RH; 24 h; 1 cycle ± (1 % R + 0.05 Ω) ± (2 % R + 0.1 Ω) 4.23.6 30 (Db) Damp heat, cyclic 55 °C; 2 9 % RH; 24 h; 5 cycle ± (1 % R + 0.05 Ω) ± (2 % R + 0.1 Ω) 4.25.1 - DC load U = √P ₇₀ x R ≤ U _{max} 1.5 h on; 0.5 h off; 70 °C; 100 h ± (1 % R + 0.05 Ω) ± (2 % R + 0.1 Ω) ± (2 % R + 0.1 Ω) 4.18.2 58 (Td) Resistance to soldering heat Solder bath method; (280 ± 5) °C; (10 ± 1) s ± (0.25 % R + 0.05 Ω) ± (0.5 % R + 0.05 Ω) 4.33 - Flammability, needle flame test		22 (13)		non-activated flux; (245 \pm 5) °C; (3 \pm 0.3) s	no visible					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.8.4.2			(20/- 55/20) °C and (20/125/20) °C	± 100 ppm/K	± 200 ppm/K				
4.19	4.32	21 (U _{U3})	Shear (adhesion)	45 N		· ·				
4.19 14 (Na) Rapid change of temperature 5 cycles	4.33	21 (U _{U1})	Substrate bending	Depth 2 mm; 3 times	no open circuit	in bent position				
4.23.2 2 (Ba) Damp heat, cyclic 125 °C; 16 h 55 °C; ≥ 90 % RH; 24 h; 1 cycle -55 °C; ≥ 1h ± (1 % R + 0.05 Ω) ± (2 % R + 0.1 Ω) ± (2 % R	4.19	14 (Na)	Rapid change of temperature	5 cycles						
4.23.3 30 (Db) Cold 55 °C; ≥ 90 % RH; 24 h; 1 cycle -55 °C; 2 h $\pm (1 \% R + 0.05 \Omega)$ $\pm (2 \% R + 0.1 \Omega)$ $\pm (2 \% R + 0.05 \Omega)$ $\pm (2 \% R $	4.23	-	Dry heat	-						
4.23.4 1 (Aa) Low air pressure $-55 ^{\circ}$ C; 2 h $\pm (1 ^{\circ}$ R + 0.05 Ω) $\pm (2 ^{\circ}$ R + 0.1 Ω) 4.23.5 13 (M) 4.23.6 30 (Db) Damp heat, cyclic $-100 ^{\circ}$ DC load $-100 ^{\circ}$ DC load $-100 ^{\circ}$ DC load $-100 ^{\circ}$ DC load $-100 ^{\circ}$ Pc load $-100 ^{\circ}$ DC load $-100 ^{\circ}$ Pc load electric overload $-100 ^{\circ}$ Pc load electric overload $-100 ^{\circ}$ Pc load $-100 ^{\circ$	4.23.2	2 (Ba)	Damp heat, cyclic	125 °C; 16 h						
4.23.5 13 (M) A.23.6 30 (Db) Damp heat, cyclic DC load $U = \sqrt{P_{70} \times R}$ $U = \sqrt{P_{70} \times R} \times U_{max}$ U	4.23.3	30 (Db)	Cold	55 °C; ≥ 90 % RH; 24 h; 1 cycle						
4.23.6 30 (Db) Damp heat, cyclic DC load $U = \sqrt{P_{70} \times R}$ $U = \sqrt{P_{70} \times R} \times U_{max}$ $U = \sqrt{P_{70} \times R} \times U_$	4.23.4	1 (Aa)	Low air pressure	- 55 °C; 2 h	$\pm (1 \% R + 0.05 \Omega)$	$\pm (2 \% R + 0.1 \Omega)$				
4.23.7 - DC load $U = \sqrt{P_{70} \times R}$ 4.25.1 - Endurance at 70 °C $\frac{U = \sqrt{P_{70} \times R} \le U_{\text{max}}}{1.5 \text{ h on; } 0.5 \text{ h of fix}}$ 4.26.1 - Endurance at 70 °C $\frac{U = \sqrt{P_{70} \times R} \le U_{\text{max}}}{70 \text{ °C; } 1000 \text{ h}}$ 4.18.2 58 (Td) Resistance to soldering heat $\frac{Solder \text{ bath method; }}{(260 \pm 5) \text{ °C; } (10 \pm 1) \text{ s}}$ 4.18.2 - Flammability, needle flame test $\frac{IEC 60695 \cdot 11 \cdot 5; 10 \text{ s}}{(260 \pm 5) \text{ °C; } (10 \pm 1) \text{ s}}$ 4.24 78 (Cab) Damp heat, steady state $\frac{IEC 60695 \cdot 11 \cdot 5; 10 \text{ s}}{(40 \pm 2) \text{ °C; } (93 \pm 3) \text{ °RH; } 56 \text{ days}}$ 4.25.3 - Endurance at upper category temperature $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions of model}}$ 4.26 45 (XA) Component solvent resistance $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions of marking}}$ 4.27 Solvent resistance of marking $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions of model}}$ 4.27 Single pulse high voltage $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions of model}}$ 4.28 Solvent resistance of marking $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions of model}}$ 4.29 A5 (XA) Component solvent resistance $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.20 Movisible damage $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.20 Movisible damage $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.20 Movisible damage $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.20 Movisible damage $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.21 Wibration, endurance of marking $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.22 Movisible damage $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.23 Periodic electric overload $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.24 Single pulse high voltage $\frac{IEC 61340 \cdot 3 \cdot 1;}{(10 \pm 1) \text{ solutions}}$ 4.25 Vibration, endurance of marking and an equation of marking legible, no visible damage and an equation of marking and an equat	4.23.5	13 (M)	-	1 kPa; (25 ± 10) °C; 1 h						
4.25.1 - Endurance at 70 °C $ \begin{array}{c} U = \sqrt{P_{70}} \times R \leq U_{\text{max}} \\ 1.5 \text{ h on; } 0.5 \text{ h off;} \\ 70 °C; 1000 \text{ h} \\ 70 °C; 1000 \text{ h} \\ 70 °C; 8000 \text{ h} \\ 260 \pm 5) °C; (10 \pm 1) \text{ s} \\ 4.18.2 \end{array} $ $ \begin{array}{c} 58 \text{ (Td)} \\ 4.18.2 \\ 58 \text{ (Td)} \\ 4.35 \\ - Flammability, needle flame test \\ 4.24 \\ 78 \text{ (Cab)} \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	4.23.6	30 (Db)	Damp heat, cyclic	· · · · · · · · · · · · · · · · · · ·						
1.100 h 1.10	4.23.7	-	DC load	$U = \sqrt{P_{70} \times R}$						
4.18.2 58 (1d) Resistance to soldering heat (260 ± 5) °C; (10 ± 1) 's $\pm (0.25\% R \pm 0.05\Omega)$ $\pm (0.5\% R \pm 0.05\Omega)$ 4.35 - Flammability, needle flame test IEC 60695-11-5; 10 s No burning after 30 s $\pm (2.25\% R \pm 0.05\Omega)$	4.25.1	-	Endurance at 70 °C	70 °C; 1000 h						
4.24 78 (Cab) Damp heat, steady state (40 ± 2) °C; (93 ± 3) % RH; 56 days $\pm (1 \% R + 0.05 \Omega)$ $\pm (2 \% R + 0.1 \Omega)$ 4.25.3 - Endurance at upper category temperature $= 155$ °C; $= 1000$ h $= \pm (1 \% R + 0.05 \Omega)$ $= \pm (2 \% R + 0.1 \Omega)$ 4.40 - Electrostatic discharge (human body model) $= 155$ °C; $= 1000$ h $= 155$ °C;	4.18.2	58 (Td)	Resistance to soldering heat		$\pm (0.25 \% R + 0.05 \Omega)$	± (0.5 % R + 0.05 Ω)				
4.25.3 - Endurance at upper category temperature 155 °C; 1000 h ± (1 % R + 0.05 Ω) ± (2 % R + 0.1 Ω) 4.40 - Electrostatic discharge (human body model) 4.29 45 (XA) Component solvent resistance 4.30 45 (XA) Solvent resistance of marking 4.22 6 (Fc) Vibration, endurance by sweeping 4.37 - Periodic electric overload 5 Endurance at upper category temperature 155 °C; 1000 h ± (1 % R + 0.05 Ω) ± (1 % R + 0.05 Ω) ± (1 % R + 0.05 Ω) 4 (1 % R + 0.05 Ω) ± (1 % R + 0.05 Ω) 4 (1 % R + 0.05 Ω)	4.35	-	Flammability, needle flame test	IEC 60695-11-5; 10 s	No burning	g after 30 s				
4.25.3 - upper category temperature	4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; (93 ± 3) % RH; 56 days	± (1 % R	+ 0.05 Ω)				
4.40 - Electrostatic discharge (human body model) 3 positive and 3 negative discharges; ESD voltage: 500 V	4.25.3	-		155 °C; 1000 h	$\pm (1 \% R + 0.05 \Omega)$	± (2 % R + 0.1 Ω)				
4.30 45 (XA) Solvent resistance of marking Isopropyl alcohol; $50 ^{\circ}\text{C}$; method 1; no visible damage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.40	-		3 positive and 3 negative discharges;	± (1 % R + 0.05 Ω)					
4.30 45 (XA) Solvent resistance of marking toothbrush no visible damage 4.22 6 (Fc) Vibration, endurance by sweeping $f = 10 \text{ Hz}$ to 2000 Hz; x, y, z ≤ 1.5 mm; $A \le 200 \text{ m/s}^2$; 10 sweeps per axis	4.29	45 (XA)	Component solvent resistance		No visible	e damage				
4.27 by sweeping $A \le 200 \text{ m/s}^2$; 10 sweeps per axis $\pm (0.25 \% R + 0.05 \Omega)$ $\pm (0.5 \% R + 0.05 \Omega)$ 4.37 - Periodic electric overload $U = \sqrt{15 \times P_{70} \times R} \le 2 \times U_{\text{max}}$ $\pm (1 \% R + 0.05 \Omega)$ 4.37 Single pulse high voltage $\hat{U} = 10 \times \sqrt{P_{70} \times R} \le 2 \times U_{\text{max}}$ $\pm (1 \% R + 0.05 \Omega)$	4.30	45 (XA)	Solvent resistance of marking							
Single pulse high voltage $\hat{U} = 10 \times \sqrt{P_{70} \times R} \le 2 \times U_{max}$	4.22	6 (Fc)		$A \le 200 \text{ m/s}^2$; 10 sweeps per axis	$\pm (0.25 \% R + 0.05 \Omega) \pm (0.5 \% R + 0.05 \Omega)$					
Single pulse high voltage overload, 10 μs/700 μs $ \hat{U} = 10 \times \sqrt{P_{70} \times R} \le 2 \times U_{\text{max.}} $ ± (1 % R + 0.05 Ω)	4.37	-			± (1 % R + 0.05 Ω)					
	4.27	-	Single pulse high voltage overload, 10 μs/700 μs	$\hat{U} = 10 \times \sqrt{P_{70} \times R} \le 2 \times U_{\text{max.}}$ 10 pulses	± (1 % R + 0.05 Ω)					

Note

All tests are carried out in accordance with the following specifications:

- EN 60115-1, generic specification
- EN 140400, sectional specification
- EN 140401-802, detail specification
- IEC 60068-2 environmental test procedures

Packaging of components is done in paper or blister tapes according to IEC 60286-3

⁽¹⁾ Figures are given for a single element.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.