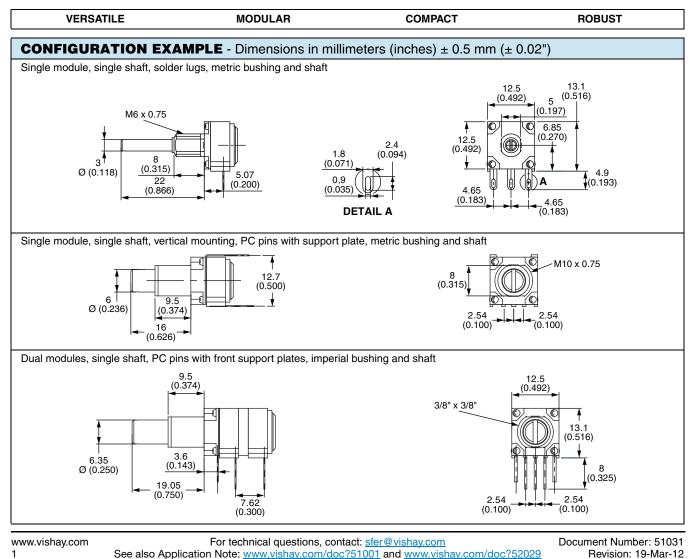
Vishay Sfernice



12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

FEATURES

- 12.5 mm square single turn panel control
- Five shaft diameters and 29 terminal styles
- Multiple assemblies up to seven modules
- Tests according to CECC 41000 or IEC 60393-1
- GAM T1
- P11S version for industrial, military and aeronautics applications
- P11A version for professional audio applications
- Low current compatibility
- Shaft and panel sealed version
- Up to twenty-one indent positions
- Rotary and push/push switch options
- Concentric shafts
- Custom designs on request
- Trimmer version T11 (see document no. 51021)
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Sfernice

GENERAL SPECIFICATIONS

ELECTRICAL (initial)				
	P11A	P11S		
Resistive Element	Conductive plastic	Cermet		
Electrical Travel	270° ± 10°	270° ± 10°		
Resistance Range ⁽¹⁾	1 k Ω to 1 M Ω	20 Ω to 10 MΩ		
Non Linear Taper	470 Ω to 500 k Ω	100 Ω to 2.2 M Ω		
Tolerance Standard	± 20 %	± 20 %		
On Request	-	± 5 % or ± 10 %		
Taper	90 % Po % Vs Ve % 50 % 20 % A 10 % L 10 % L 10 % Electrical travel 270° 15° Electrical travel 270° 31° with switch 238° 31° Mechanical travel 300°			
Circuit Diagram	$\begin{array}{c} a \\ c \\ (1) \\ b \\ (2) \end{array} \xrightarrow{c} (3) \\ $			
Linear Taper	0.5 W at + 70 °C	1 W at + 70 °C		
Non-Linear Taper	0.25 W at + 70 °C	0.5 W at + 70 °C 0.5 W at + 70 °C per module		
Multiple Assemblies	0.25 W at + 70 °C per module			
Power Rating at 70 °C	P11S Linear Taper P11S Non-Linear Taper P11S Non-Linear Taper P11A Linear Taper P11A Non-Linear Taper 0.25 P11A Non-Linear Taper 0 10 20 30 40 50	60 70 80 90 100 110 120 130 Ambient Temperature (°C)		
Temperature Coefficient (Typical)	± 500 ppm	± 150 ppm		
Limiting Element Voltage	350 V	350 V		
End Resistance (Typical)	2Ω	2Ω		
Contact Resistance Variation (Typical) Linear Taper	1 %	2 % or 3 Ω		
Independent Linearity (Typical) Linear Taper	± 5 %	± 5 %		
Insulation Resistance	10 ⁶ MΩ min.	$10^6 \text{ M}\Omega \text{ min.}$		
Dielectric Strength	1500 V _{BMS} min.	1500 V _{RMS} min.		
Attenuation	90 dB max./0.05 dB min.	-		
Mechanical Endurance	50 000 cycles	50 000 cycles		
Note	00 000 090105			

Note

⁽¹⁾ Consult Vishay Sfernice for other ohmic values

 Document Number: 51031
 For technical questions, contact: <u>sfer@vishay.com</u>
 www.vishay.com

 Revision: 19-Mar-12
 See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u>
 2

Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

MECHANICAL (initial)	
Mechanical Travel	300° ± 5°
Operating Torque (Typical)	
Single and Dual Assemblies Three to Seven Modules (Per Module)	0.4 Ncm to 1.8 Ncm max. (0.57 ozinch to 2.55 ozinch max.) 0.2 Ncm to 0.3 Ncm max. (0.28 ozinch to 0.42 ozinch max.)
End Stop Torque (All Bushing Except G and Concentric Shaft Configuration)	
3 mm, 4 mm, and 1/8" Dia. Shafts 6 mm and 1/4" Dia. Shafts	35 Ncm max. (2.9 lb-inch max.) 80 Ncm max. (6.8 lb-inch max.)
End Stop Torque for Bushing G	
All Shafts Dia.	40 Ncm max. (3.4 lb-inch max.)
End Stop Torque for Concentric Shaft Configuration	
3 mm and 1/8" Dia. Shafts 6 mm and 1/4" Dia. Shafts	25 Ncm max. (2.1 lb-inch max.) 80 Ncm max. (6.8 lb-inch max.)
Tightening Torque	
6 mm, 7 mm, and 1/4" Dia. Bushings 10 mm and 3/8" Dia. Bushings	150 Ncm max. (13 lb-inch max.) 250 Ncm max. (21 lb-inch max.)
Weight	7 g to 9 g per module (0.25 oz. to 0.32 oz.)

ENVIRONMENTAL						
	P11A	P11S				
Operating Temperature Range	- 55 °C to + 125 °C	- 55 °C to + 125 °C				
Climatic Category	55/125/21	55/125/56				
Sealing	IP64	IP64				

MARKING

- Potentiometer Module
 Vishay logo, nominal ohmic value (Ω, kΩ, MΩ), two stars identify P11A version, tolerance in % variation law, manufacturing date (four digits), "3" for the lead 3
- Switch Module Version, manufacturing date (four digits), "c" for common lead
 Indent Module Version, manufacturing date (four digits)

PACKAGING

• Box

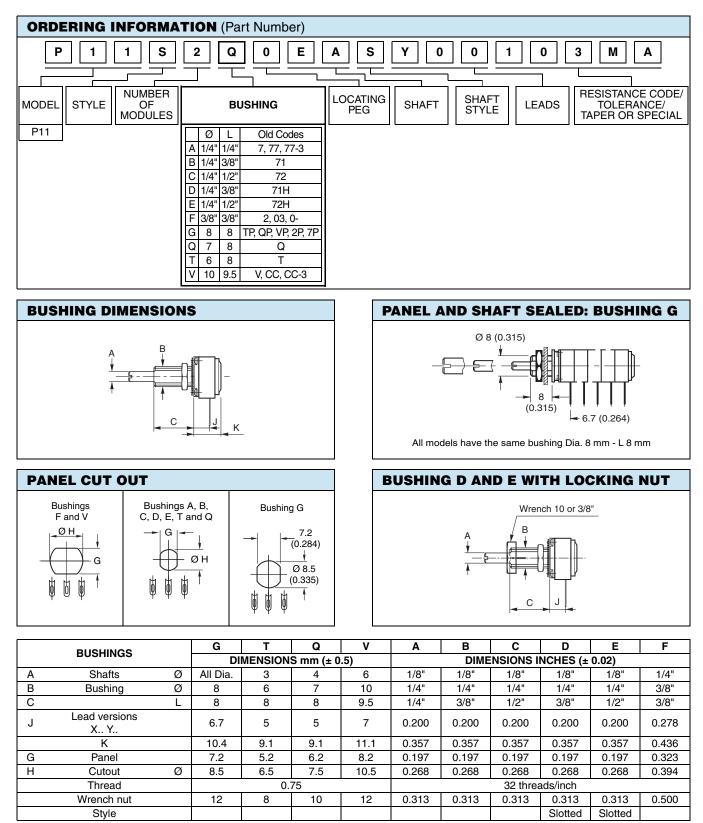
PERFORMANCES								
TESTS	CONDITIONS	TYPICAL VALUE AND DRIFTS						
12515	CONDITIONS		P11S	P11A				
Electrical Endurance	1000 h at rated power 90'/30' - ambient temp. 70 °C	$\Delta R_{T}/R_{T}$ Contact resistance variation	± 2 % ± 4 %	± 10 % ± 5 %				
Change of Temperature	- 55 °C to + 125 °C, 5 cycles	$\Delta R_{\rm T}/R_{\rm T}$	± 0.2 %	± 0.5 %				
Damp Heat, Steady State	+ 40 °C, 93 % relative humidity P11S: 56 days, P11A: 21 days	$\Delta R_{\rm T}/R_{\rm T}$ Insulation resistance	± 2 % > 1000 MΩ	± 5 % > 10 MΩ				
Mechanical Endurance	ical Endurance 50 000 cycles		± 5 % ± 5 %	± 6 % ± 4 %				
Climatic Sequence	Dry heat at + 125 °C/damp heat cold - 55 °C/damp heat, 5 cycles	$\Delta R_{\rm T}/R_{\rm T}$	±1%	-				
Shock	50 g's, 11 ms 3 shocks - 3 directions	$\Delta R_{T}/R_{T}$ $\Delta R_{1-2}/R_{1-2}$	± 0.2 % ± 0.5 %	± 0.2 % ± 0.5 %				
Vibration	10 Hz to 55 Hz 0.75 mm or 10 <i>g</i> 's, 6 h	$\Delta R_{T}/R_{T}$ $\Delta V_{1-2}/V_{1-3}$	± 0.2 % ± 0.5 %	± 0.2 % ± 0.5 %				

For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> Document Number: 51031 Revision: 19-Mar-12

Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

ORDE	ORDERING INFORMATION (Part Number)							
Р								
MODEL	STYLE	NUMBER OF MODULES	BUSHING	LOCATING PEG	SHAFT	SHAFT STYLE	LEADS	RESISTANCE CODE/ TOLERANCE/ TAPER OR SPECIAL
P11	S = CERMET ELEMENT A = CONDUCTIVE PLASTIC (AUDIO)	1 2 3 4 5 6 7						


STAND/	ARD RESISTANCE ELEMENT DATA											
		P11S CERMET						P11A CONDUCTIVE PLASTIC				
STANDARD	L	INEAR TAP	PER	NO	N LINEAR 1	TAPER	I	LINEAR TAI	PER	NO	N LINEAR 1	TAPER
RESISTANCE VALUES	MAX. POWER AT 70 °C		MAX. CUR. THROUGH WIPER	-	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	-	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT 70 °C		
Ω	W	V	mA	w	V	mA	w	v	mA	w	V	mA
22 47 50 100	1 1 1	4.69 6.86 7.07 10.0	213 146 141 100	0.5	7.07	70.7						
220	1	14.8	67.4	0.5	10.5	47.7						
470 500 1K	1 1 1	21.7 22.4 31.6	46.1 44.7 31.6	0.5 0.5 0.5	15.3 15.8 22.4	32.6 31.6 22.4	0.5	22.4	22.4	0.25 0.25	11.2 15.8	22.4 15.8
2.2K 4.7K	1	46.9 63.6	21.3 14.5	0.5 0.5	33.2 48.5	15.1 10.3	0.5 0.5	33.2 48.5	15.1 10.3	0.25	23.5 34.3	10.7 7.29
5K 10K	1 1	70.7 100	14.1 10.0	0.5 0.5	50.0 70.7	10.0 7.07	0.5 0.5	50.0 70.7	10.0 7.07	0.25 0.25	35.4 50.0	7.07 5.00
22K 47K	1 1	148 217	6.74 4.61	0.5 0.5	105 153	4.77 3.26	0.5 0.5	105 153	4.77 3.26	0.25 0.25	74.2 108	3.37 2.31
50K 100K	1	224 316	4.47 3.16	0.5 0.5	158 224	3.16 2.24	0.5 0.5	158 224	3.16 2.24	0.25 0.25	112 158	2.24 1.58
220K 470K 500K	0.56 0.26 0.25	350 350 350	1.59 0.75 0.70	0.5 0.26 0.25	332 349 350	1.51 0.74 0.70	0.5 0.26 0.25	332 350 350	1.51 0.74 0.70	0.25 0.25 0.25	235 343 350	1.07 0.73 0.70
1M 2.2M	0.12 0.56	350 350	0.35 0.16	0.12 0.056	350 350	0.35 0.16	0.12	350	0.35	0.20	000	0.70
4.7M 5M 10M	0.26 0.25 0.12	350 350 350	0.074 0.070 0.035									

Document Number: 51031 Revision: 19-Mar-12 For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u>

Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

Notes

5

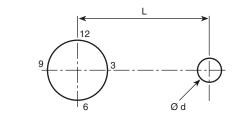
Hardware supplied in separate bags

Slotted bushing for locking nut option

For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> Document Number: 51031 Revision: 19-Mar-12

www.vishay.com

Vishay Sfernice


12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

ORDE	ORDERING INFORMATION (Part Number)							
P 1 1 S 2 Q 0 E A S Y 0 0 1 0 3 M A								
MODEL	STYLE	NUMBER OF MODULES	BUSHING	LOCATING PEG	SHAFT	SHAFT STYLE	LEADS	RESISTANCE CODE/ TOLERANCE/ TAPER OR SPECIAL
				Old Codes				
				A = B24				
				B = B30				
				C = B53				
				0 = Without peg				

LOCATING PEGS (Anti-Rotation Lug)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides. Four set positions are available, clock face orientation: 12, 3, 6, 9.

All P11 bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation lug is not necessary.

CODE	VERSION	BUSHING A, B, C, D, E, T, Q	BUSHING F, V	EFFECTIVE HIGH PEG
A	Ø d mm	2	2	0.7
A	L mm	6.2	6.2	
в	Ø d mm	2	2	0.7
Б	L mm	7.75	7.75	
С	Ø d mm	-	3.5	1.1
U	L mm	-	13.5	

Locating pegs are supplied in separate bags with nuts and washers

Vishay Sfernice 12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

ORDERING INFORMATION (Part	Number)				
P 1 1 S 2 Q	0 E	A S Y 0		0	3 M A
MODEL STYLE NUMBER OF MODULES BUSHING	LOCATING PEG	SHAFT	SHAFT STYLE	LEADS	RESISTANCE CODE/ TOLERANCE/ TAPER OR SPECIAL
			S = Slotted R = Round F = Flatted K = Knurled/ D = Custom		

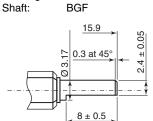
The shaft length is always measured from the mounting face. Standard shafts are designed by a 3 letters code (3 digits). Shafts slots are aligned to $\pm 10^{\circ}$ of the wiper position.

All standard shafts are slotted except flatted and splined, see exeptions for bushing.

Bushing:

FLATTED SHAFT

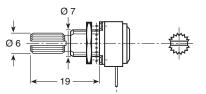
19.1



F GHF

22 ± 0.5

Ø 6.35



А

BUSHING: Q

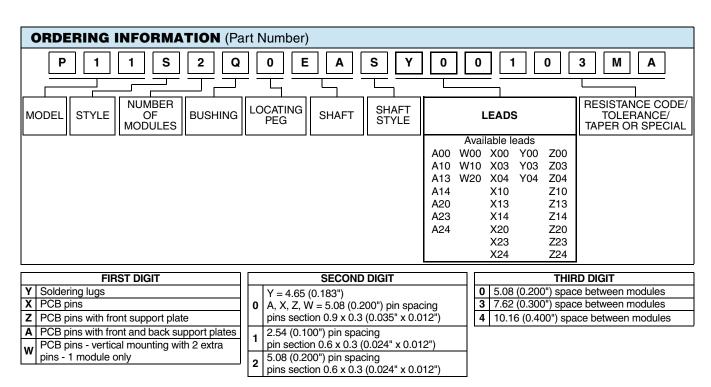
CUSTOM SHAFTS

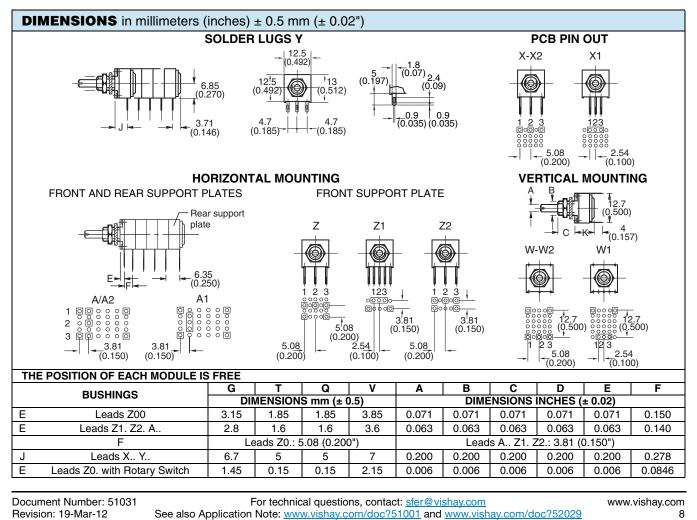
When special shafts are required - flat, threated ends, special shaft lengths, etc. a drawing is required.

STANDARD COMBINATION OF SHAFT STYLES AND BUSHINGS								
SHAFT DIA.	BUSHING CODE	SHAFT	LENGTH AND	STYLE AVAILA	BLE IN STANDA	RD (Others on re	equest)	
3	Т	AAS	ABS	AJS				
3.17	A	BAS	BBS	BGS	BGF	BHS	BJS	
3.17	В	BBS	BGS	BHS	BJS			
3.17	С	BGS	BHS	BJS				
4	Q	EAS	EBS	EJS	FHK			
6	V	FGS	FLS	FRS				
6.35	F	GGS	GHS	GJS	GLS	GOS	GHF	

www.vishay.com 7

For technical questions, contact: sfer@vishay.com See also Application Note: www.vishay.com/doc?51001 and www.vishay.com/doc?52029 Document Number: 51031 Revision: 19-Mar-12

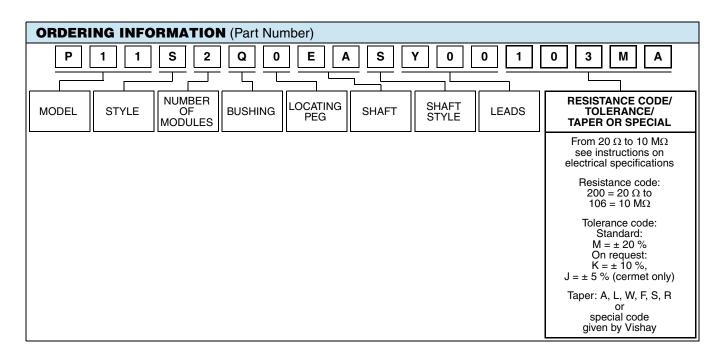

Revision: 19-Mar-12


P11S, P11A

Vishay Sfernice

8

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)



Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

SPECIAL CODES GIVEN BY VISHAY

Option available:

- Custom shaft
- Custom design on request
- Specific linearity
- Specific interlinerarity
- Specific taper
- Multiple assemblies with various modules

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A) Vishay Sfernice

P11 OPTION: ROTARY SWITCH MODULES

- Rotary switchs
- Current up to 2 A
- Actuation CW or CCW position
- Sealing IP60

MODULES: RS ON/OFF SWITCH RSI CHANGEOVER SWITCH

The position of each module is free.

RS and RSI rotary switches are housed in a standard P11 module size 12.7 mm x 12.7 mm x 5.08 mm (0.5" x 0.5" x 0.2"). They have the same terminal styles as the assembled electrical modules.

An assembly can comprise 1 or more switch modules.

Switch actuation is described as seen from the shaft end. D:means actuation in maximum CCW position F:means actuation in maximum CW position

The switch actuation travel is 25° with a total mechanical travel of $300^{\circ} \pm 5^{\circ}$ and electrical travel of electrical modules is $238^{\circ} \pm 10^{\circ}$.

Leads finish: Gold plated.

RDS SINGLE POLE SWITCH, NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.

RSF SINGLE POLE SWITCH, NORMALLY OPEN

In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

In full CCW position, the contact is made between 3 and 2 and open between 3 and 1. Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

In full CW position, the contact is made between 1 and 2 and open between 1 and 3. Switch actuation (CCW direction) reverses these positions.

SWITCH SPECIFICATIONS							
Switching Pov	62.5 VA v 15 VA =						
Switching Cu	0.25 A 250 V v 0.5 A 30 V =						
Maximum Cu	rrent Through Element	2 A					
Contact Resis	stance	100 m Ω					
Dielectric	Terminal to Terminal	1000 V _{RMS}					
Strength	Terminal to Bushing	2000 V _{RMS}					
Maximum Vol	tage Operation	250 V ν 30 V =					
Insulation Re	10 ⁶ ΜΩ						
Life at P _{max.}	10 000 actuations						
Minimal Trave)	25°					
Operating Ter	mperature	- 40 °C to + 85 °C					

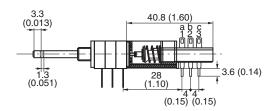
ELECTRICAL DIAGRAM

	RSD	RSID	RSIF
	RSF	CCW POSITION	CW POSITION
Note (1) Comm	1 3		1 ⁽¹⁾ 2 3

ORDERING INFORMATION (First order only)

	RSID	
RSD		SPST: Single pole, open switch in CCW position - 2 pins
RSF		SPST: Single pole, open switch in CW position - 2 pins
RSID		SPDT: Single pole, changeover switch in CCW position - 3 pins
RSIF		SPDT: Single pole, changeover switch in CW position - 3 pins

Document Number: 51031 Revision: 19-Mar-12 See also


For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> www.vishay.com 10

Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

P11 OPTION: PUSH/PUSH OR MOMENTARY/PUSH SWITCH MODULES

MODULES: PUSH/PUSH SWITCH RSPP MOMENTARY/PUSH SWITCH RSMP

They have to be the last element of potentiometer

Options:

- 2 reversing switches F2
- 4 reversing switches F4

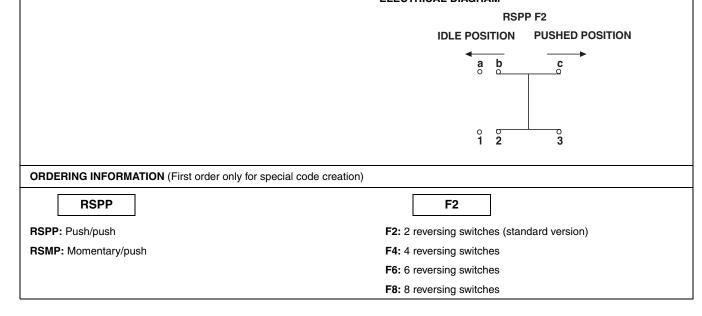
6 reversing switches F6 8 reversing switches F8

Not available with panel sealed option.

Number of modules before the switch limited to 3 modules. Length of shaft (FMF) 25 mm maximum.

RSPP F2: PUSH/PUSH SWITCH WITH TWO REVERSING SWITCHES

Idle position: The contact is made between 1 and 2 and a and b. It is open between 2 and 3 and b and c.


Pushed position: The contact is made between 2 and 3 and b and c. It is open between 1 and 2 and a and b.

- Push/push or momentary push
- Current up to 2 A
- Sealing IP60

SWITCH SPECIFICATIONS

Switching Pov	wer Maximum	50 VA v			
Switching Cu	rrent Maximum	0.5 A v			
Maximum Cu	rrent Through Element	2 A			
Contact Resis	stance	100 mΩ			
Dielectric	Terminal to Terminal	1500 V _{RMS}			
Strength	Terminal to Bushing	2000 V _{RMS}			
Maximum Vol	tage Operation	250 V v			
Insulation Re	sistance Between Contacts	10 ³ ΜΩ			
Life at P _{max.}		100 000 actuations			
Minimal Trave	91	3.3 mm to 4.7 mm			
Operating Ter	mperature	- 40 °C to + 70 °C			

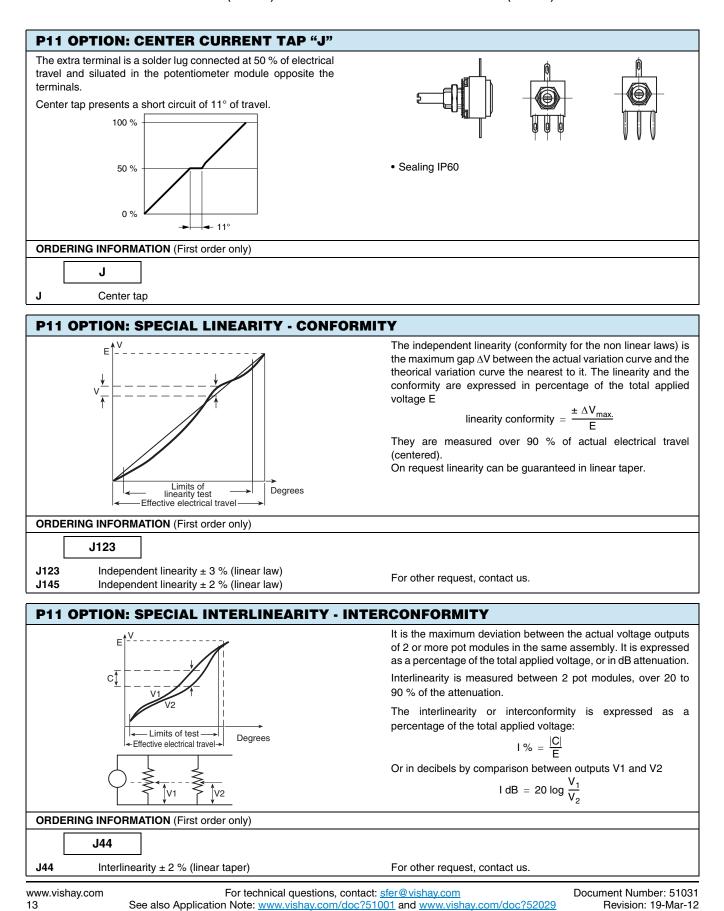
ELECTRICAL DIAGRAM

For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u> Document Number: 51031 Revision: 19-Mar-12

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

P11S, P11A

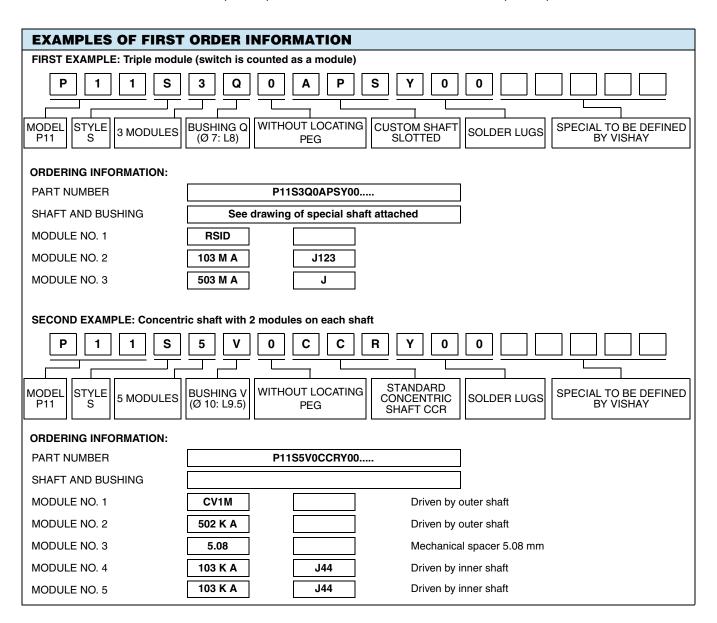
Vishay Sfernice


12

system to the adv	c shaft versions allies antage of having two	the total flexibility	of the P11 modular		5.08	4		
The outer 6 mm of	r 1/4" or 1/8" dia. sha d the panel, before th	ft drives the module	es situated		╤╤╡╶╼┤ ┎ ╢ ┠╝╎║╻╷╖			
	1/8" or 0.07" dia. sha	•	es situated after the		╡╴┫╪╴┝╴┼╴╵╴┤╶╢╵ ╡╸┫╴╴╴╴╴╴╴┤╶╢╵ ┥╺╼╴┙╴╹╴╹、┥、╹╶╹			
	e with a choice of two ions or 2.54 mm desi		sional drawing	- -		cer module		
BUSHING				INNER SHAFT DIAMETER				
CODE	DIAMETER	LENGTH L	SHAFT STYLE	DIAMETER	LENGTH I	SHAFT STYLE		
V	6	16	R	3	28.5	R		
F	6.35 (1/4")	16	R	3.17 (1/8")	28.5	R		
А	3.17 (1/8")	12.7 (1/2")	R	1.8 (0.07")	22.2 (7/8")	R		
	RMATION (First orde	ar only for choosed of	ada areation)					
5.08								
2 54. Mechanical	spacer of 2.54 mm							
	spacer of 5.08 mm							
Customer should	define witch modules	is driven by each s	haft (see example of	ordering information	at the end of the da	ta sheet)		
	: DETENT MO							
	nanism is housed in a		odule.					
Up to 21 detent po	ositions available.	a standard P11 mc				_/α_		
Up to 21 detent po Count detents as	ositions available. follows: 1 for CCW	a standard P11 mc	I CW			-/a		
Up to 21 detent po Count detents as position, plus the	ositions available. follows: 1 for CCW other positions fo	a standard P11 mo ' position, 1 for ful rming equal resis	I CW		() pro-	4		
Up to 21 detent po Count detents as position, plus the increments (linear	ositions available. follows: 1 for CCW e other positions fo taper) - not equal an	a standard P11 mo ' position, 1 for ful rming equal resis	I CW			α β α_270°		
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID -	ositions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM	a standard P11 mo ' position, 1 for ful rming equal resis	I CW tance			$\beta \qquad \alpha = \frac{270^{\circ}}{n-1}$		
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C	ositions available. follows: 1 for CCW o other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21	a standard P11 mo ' position, 1 for ful rming equal resis	I CW tance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C	ositions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM	a standard P11 mo ' position, 1 for ful rming equal resis	I CW tance		CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura	ositions available. follows: 1 for CCW o other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21	a standard P11 mc position, 1 for ful rming equal resis gles.	l CW Bance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura	ositions available. follows: 1 for CCW other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles	a standard P11 mc position, 1 for ful rming equal resis gles.	l CW Bance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO	ositions available. follows: 1 for CCW other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles	a standard P11 mc position, 1 for ful rming equal resis gles.	l CW Bance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M J84 CV11	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order tent at half travel M with accuracy of ce	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order tent at half travel M with accuracy of ce tent at CCW position	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det CV1D 1 det CV1F 1 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order tent at half travel M with accuracy of ce tent at CCW position tent at CW position	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det CV1D 1 det CV1F 1 det CV3 3 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tent at CW position tents	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det CV1F 1 det CV3 3 det CV11 11 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tent at CW position tents etents	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 384 CV11 CV1D 1 det CV1F 1 det CV3 3 det CV11 11 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tent at CW position tents	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance	VID CVIM	CVIF CV1			
Up to 21 detent po Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det CV1F 1 det CV3 3 det CV11 11 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tent at CW position tents etents	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance	VID CVIM				
Up to 21 detent por Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M J84 CV11 CV1D 1 det CV1F 1 det CV1F 1 det CV3 3 det CV21 21 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tent at CW position tents etents	a standard P11 mc ' position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a	I CW tance ode creation)	VID CVIM				
Up to 21 detent por Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det CV1F 1 det CV1F 1 det CV1F 1 det CV1F 1 det CV1 1 11 det CV21 21 det CV21 21 det	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tents etents etents etents etents	a standard P11 mc position, 1 for ful rming equal resisting igles. er only for special co enter point ± 2 % (a IODULES "EI	I CW tance ode creation) Il tapers except S)					
Up to 21 detent por Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det CV1F 1 det CV1F 1 det CV1F 1 det CV1F 1 det CV1 1 11 det CV21 21 det CV21 21 det CV21 21 det CV21 21 det	sitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tents etents etents etents etents etents etents etents etents	a standard P11 mc position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a IODULES "EI a standard P11 mc	I CW tance ode creation) Il tapers except S)	VID CVIM				
Up to 21 detent por Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M J84 CV11 CV1D 1 det CV1F 1 det CV1F 1 det CV11 11 det CV21 21	esitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First order with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tents etents etents etents etents	a standard P11 mc ' position, 1 for ful rming equal resis igles. er only for special co enter point ± 2 % (a IODULES "EI a standard P11 mc ctrical modules.	I CW tance ode creation) Il tapers except S)	VID CVIM				
Up to 21 detent por Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M J84 CV11 CV1D 1 det CV1F 1 det CV1F 1 det CV21 21	sitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First ordet with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tents etents etents etents etents etents etents etents etents etents etents etents etents	a standard P11 mc ' position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a IODULES "EI a standard P11 mc ctrical modules.	I CW tance ode creation) Il tapers except S)					
Up to 21 detent por Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M J84 CV11 CV1D 1 det CV1F 1 det CV1F 1 det CV21 21	estions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First ordet with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tents etents etents etents etents etents etents etents etents etents	a standard P11 mc ' position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a IODULES "EI a standard P11 mc ctrical modules.	I CW tance ode creation) Il tapers except S)					
Up to 21 detent por Count detents as position, plus the increments (linear Available: CVID - CV3 - C Mechanical endura ORDERING INFO CV1M 1 det CV1M 1 det CV1M 1 det CV1D 1 det CV1F 1 det CV1F 1 det CV1F 1 det CV21 21 det	sitions available. follows: 1 for CCW e other positions fo taper) - not equal an CVIF - CVIM CV11 - CV21 ance: 10 000 cycles RMATION (First ordet with accuracy of ce tent at half travel M with accuracy of ce tent at CCW position tents etents etents etents etents etents etents etents etents etents etents etents etents	a standard P11 mc ' position, 1 for ful rming equal resis gles. er only for special co enter point ± 2 % (a IODULES "EI a standard P11 mc ctrical modules.	I CW tance ode creation) Il tapers except S)			$\alpha = \frac{270^{\circ}}{n-1}$ $\beta = \alpha + 19$		

Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)



Vishay Sfernice

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

PART	PART NUMBER DESCRIPTION (used on some Vishay document or label, for information only)											
P11S	2	Q	0	EA	S	Y00	10K	20 %	Α			e3
MODEL	MODULES	BUSHING	LOCATING PEG	SHALL	SHAFT STYLE	LEADS	VALUE	TOL.	TAPER	SPECIAL	SPECIAL	LEAD (Pb)-FREE

Document Number: 51031 Revision: 19-Mar-12

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.