

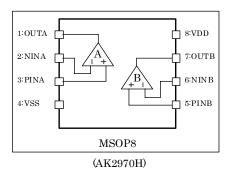
Preliminary

AK2970

Zero Drift operational amplifiers

Feature

AK2970 is the dual channel CMOS operational amplifires which is available to output with very low input offset voltage ($\pm 5\mu V@10V$) and near zero input offset dirft.


It's operated with very small current consumptions, 1.5mA typ./ch (VDD:10V), which is available to operate full swing signals in output.

AK2970 is appropriated to Sensor Pre Amp. applications.

- □ Wide Supply Operation Range: $4.5V \sim 13.2V \ (\pm 2.25V \sim \pm 6.6V)$ □ Very Low Input Offset Voltage : $\pm 5\mu V$ max. (@VDD:10V)
- \square Near Zero Dirft over time and temperature : ± 20 nV/ $^{\circ}$ C max. (@VDD:10V)
- \square Full Swing Outputs to $10k\Omega$ Load
- ☐ Power Supply Current : 1mA typ./ch (VDD: 10V, No Load)
- ☐ Gain Bandwidth : 4MHz typ. ☐ Slew Rate : 4V/µsec typ.
- ☐ Operationg Temperature Range : -40 ~ 125°C
- ☐ Package : MSOP8

Part Name	Channel Number	Package
AK2970H	2	MSOP8

Pin Location

Pin Function Descriptions

Pin number	Name	I/O note)	Function				
1	OUTA	AO	Amplifier A Output				
2	NINA	AI	Amplifier A Inverted Input				
3	PINA	AI	Amplifier A No Inverted Input				
4	VSS	PWR	Power Supply Ground				
5	PINB	AI	Amplifier B No Inverted Input				
6	NINB	AI	Amplifier B Inverted Input				
7	OUTB	AO	Amplifier B Output				
8	VDD	PWR	Positive Power Supply				

Note)

PWR : Power Supply
AI : Analog Input
AO : Analog Output

Absolute Maximum Ratings

VSS=0V; Note

Parameter	Symbol	Min	Max	Units
Supply Voltage	VDD	-0.3	14	V
Input Voltage	V_{TD}	-0.3	VDD + 0.3	V
Input Current	I_{IN}	-10	+10	mA
Storage Temperature Range	T_{stg}	-55	150	°C

Note: All voltage with respect to ground

WARNING:

Operational at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Operationg Temperature Range	Ta	-40		125	°C	
Supply Voltage	VDD	4.5		13.2	V	

^{*}We assumes no responsibility for the usage beyond the conditions in this datasheet.

Electrical Characteristics

☐ DC Characteristics (typical condition is VDD=10V,Ta=25°C)

VDD:10V, Ta:-40 to 125°C, unless otherwise noted

Parameter	Min.	Typ.	Max.	Units	Conditions
Input Voltage Offset		± 1	± 5	μV	Ta=25°C,inverting-amp,
					gain@60dB
			± 5	μV	VDD:10V,all temperature
					range, inverting-amp,
					gain@60dB
			± 10	μV	VDD>5V, all tenperature
					range, inverting-amp,
					gain@60dB
			± 20	μV	VDD>4.5V, all tenperature
					range, inverting-amp,
					gain@60dB
Input Voltage Offset Drift		± 10	± 20	nV/°C	0 170
			± 20	nV/°C	VDD>6V,inverting-amp,
					gain@60dB
			± 50	nV/°C	VDD>5V,inverting-amp,
					gain@60dB
			± 70	nV/°C	VDD>4.5V,inverting-amp,
					gain@60dB
Input Bias Current		± 50		pA	Ta=25°C (@1/2*VDD),
					$Rf=510k\Omega$: Note1)
Input Common Mode Range	VSS		VDD	V	
Output Voltage Swing	0.1		VDD-0.1	V	RL ≥10kΩ connected to VDD/2
Common Mode Rejection Ratio	110	130		dB	@ Input Common Mode Range
	105	130		dB	VDD>5V
					@Input Common Mode Range
	85	130		dB	VDD>4.5V
					@Input Common Mode Range
	100	130		dB	VDD>4.5V
					@(VSS ~ [VDD-0.1])
Power Supply Rejection Ratio	110	130		dB	13.2V > VDD > 4.5V
Large Signal Voltage Gain	100	130		dB	RL ≥10kΩ connected to VDD/2
Power Supply Current		1.0	1.8	mA/ch	VDD:10V Note 2)
		1.0	2.5	mA/ch	VDD: $4.5 \sim 13.2$ V Note 2)

Note 1) Input Bias Current is defined at the offset voltage(Voff) of the trance impedance amplifier. In case of the return resistance is Rf, the input bias current is expressed a following formula.

Is= Voff/Rf

When using as the trance impedance amplifier, it recommends VCOM=VDD/2. Note 2) It doesn't include an output drive current.

Rev.0.12Ea 2012/6 Preliminary

[AK2970]

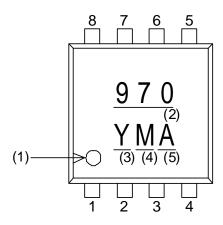
☐ AC Characteristics

VDD: 10V, Ta:-40 to 125°C, unless otherwise noted

Parame	ter	Min.	Typ.	Max.	Units	Conditions
Output short current			±70		mA	VDD or VSS is connected to Vout
						of Voltage follower connection.
				± 180	mA	VDD or VSS is connected to Vout o
						Voltage follower connection.
						VDD:13.2V
Output current			± 20		mA	Vcm:VSS@ [VSS+1V] output
						Vcm:VDD@ [VDD-1V] output
		± 5			mA	VDD:4.5V
Gain Bandwidth (C	GBW)		4		MHz	Inverting gain:60dB,
						load capacity: 20pF
				6.5	MHz	VDD:13.2V
		3			MHz	VDD:4.5V
Slew Rate			4		$V/\mu s$	Av =1 , load capacity: 20pF
						Defined at 10%⇔90%
				10	V/µs	VDD:13.2V
		1.7			V/µs	VDD:4.5V
Input Voltage Noise			80		nV/\sqrt{Hz}	@1kHz
			0.8		μVpp	0.1~10Hz Note 3)
			0.3		μVpp	0.1~1Hz Note 3)
Overload Recovery Time			50		μsec	Av:50 times, load: 20pF,
						200mV input, VDD:10V, the time
						which reaches within 10 % of the
						final value.
Input capacitance	Differencial		1.5		pF	
	Common		5		pF	
Maximum Capacitance Loads				150	pF	

Note 3) These are converted from the noise density.

- < The following is a reference information.>
- The phase-margin in case of the load drive(150pF): 70deg typ.
- The chopper clock frequency: 10kHz typ.

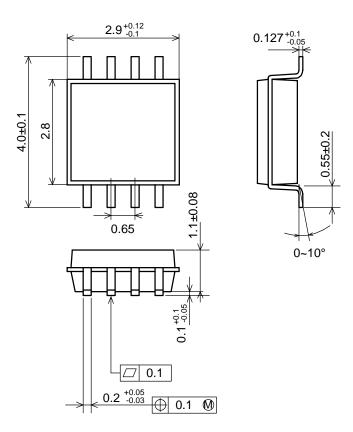

Rev.0.12Ea 2012/6 Preliminary

Asahi **KASEI** [AK2970]

Package

1. Marking

1.1 MSOP8



- (1) Pin Number 1 indication mark
- (2) Part Number
- (3) Date Code (Year)(4) Date Code (Month)
- (5) Lot Number

2. Outline Dimensions

2.1 MSOP8 Package Outline

(UNIT:mm)

Asahi KASEI [AK2970]

IMPORTANT NOTICE

These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.

Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement

of any patent, intellectual property, or other rights in the application or use of such information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.

AKM products are neither intended nor authorized for use as critical components_{Note1}) in any safety, life support, or other hazard related device or system_{Note2}), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore

meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for

applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

Rev.0.12Ea 2012/6 Preliminary