

MediaClock™ Mini Disc Clock Generator

Features

- Integrated phase-locked loop (PLL)
- Low jitter, high accuracy outputs
- 3.3V operation
- 8-pin SOIC package

Benefits

- High performance PLL tailored for mini disc applications.
- Meets critical timing requirements in complex system designs.
- Enables application compatibility.
- Industry standard package saves on board space.

Part Number	Outputs	Input Frequency Range	Output Frequencies
CY24115-1	1	1 MHz-30 MHz	45.1584 MHz and 90.3168 MHz (selectable)
CY24115-2	1	1 MHz-30 MHz	90.3168 MHz and 180.6336 MHz (selectable)

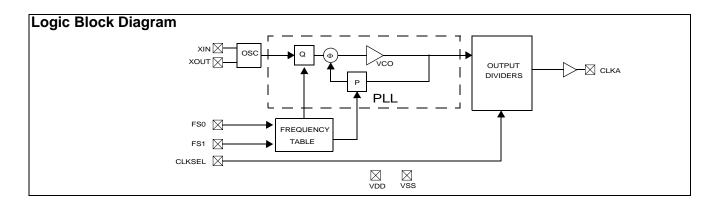


Table 1. CLKSEL Function CY24115-1

CLKSEL	CLKA	Unit	PPM Error
0	45.1584	MHz	0
1	90.3168	MHz	0

Table 2. CLKSEL Function, CY24115-2

CLKSEL	CLKA	Unit	PPM Error
0	90.3168	MHz	0
1	180.6336	MHz	0

Table 3. Input Frequency Function, CY24115-1 and CY24115-2

FS1	FS0	Xtal Input	Unit
0	0	2.8224	MHz
0	1	5.6448	MHz
1	0	11.2896	MHz
1	1	22.5792	MHz

Pin Configurations

Figure 1. CY24115 8-Pin SOIC

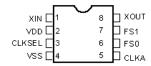


Table 4. Pin Summary

Pin Name	Pin Number	Pin Description
X _{IN}	1	Reference input (crystal or external input)
V _{DD}	2	3.3V voltage supply
CLKSEL	3	CLKA select line For 24115-1, see Table 1 on page 1 for output values For 24115-2, see Table 2 on page 1 for output values
V _{SS}	4	Ground
CLKA	5	24115-1: 45.1584 MHz and 90.3168 MHz (frequency selectable). See Table 1 on page 1. 24115-2: 90.3168 MHz and180.6336 MHz (frequency selectable). See Table 2 on page 1.
FS0	6	Input frequency FS0. See Table 3 on page 1.
FS1	7	Input frequency FS1. See Table 3 on page 1.
X _{OUT} ^[1]	8	Reference output

 $[\]label{eq:Note} \mbox{1. Float X_{OUT} if X_{IN} is externally driven.}$

Absolute Maximum Conditions

Parameter	Description	Min	Max	Unit
V _{DD}	Supply Voltage	-0.5	7.0	V
T _S	Storage Temperature ^[2]	-65	125	C
T _J	Junction Temperature		125	C
	Digital Inputs	V _{SS} - 0.3	V _{DD} + 0.3	V
	Digital Outputs Referred to V _{DD}	V _{SS} - 0.3	V _{DD} + 0.3	V
	Electrostatic Discharge	2		kV

Recommended Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
V_{DD}	Operating Voltage	3.14	3.3	3.47	V
T _A	Ambient Temperature	0		70	C
C _{LOAD}	Max. Load Capacitance			15	pF
f _{REF}	Reference Frequency	2.8224		22.5792	MHz
t ₁	Driven Reference Edge Rate	0.8			V/ns
DC _{IN}	Driven Reference Duty Cycle	40		60	%
C _{IN}	X _{IN} , X _{OUT} capacitance		12		pF
t _{PU}	Power up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic)	0.05		500	ms

DC Electrical Characteristics

Parameter	Name	Description	Min	Тур	Max	Unit
I _{OH}	Output High Current	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V \text{ (source)}$	12	24		mA
I _{OL}	Output Low Current	$V_{OL} = 0.5, V_{DD} = 3.3V \text{ (sink)}$	12	24		mA
C _{IN}	Input Capacitance	CLKSEL, FS0, FS1, excludes XIN, XOUT			7	pF
V _{IL}	Input Low Voltage				30	% of V _{DD}
V _{IH}	Input High Voltage		70			% of V _{DD}
I _{IZ}	Input Leakage Current			5		μΑ
I _{DD}	Supply Current	Sum of core and output current			35	mA

AC Electrical Characteristics ($V_{DD} = 3.3V$)

Parameter ^[3]	Name	Description	Min	Тур	Max	Unit
DC	Output Duty Cycle	Duty cycle is defined in Figure 3, 50% of V _{DD}	45	50	55	%
t ₃	Rising Edge Slew Rate	Output clock rise time, 20%-80% of V _{DD}	0.8	1.4		V/ns
t ₄	Falling Edge Slew Rate	Output clock fall time, 80%–20% of V _{DD}	0.8	1.4		V/ns
t ₉	Clock Jitter	Peak to peak period jitter			350	ps
t ₁₀	PLL Lock Time				3	ms

Notes

- Rated for 10 years.
 Not 100% tested.

Figure 2. Test Circuit CLK out $\mathsf{C}_{\mathsf{LOAD}}$

Figure 3. Duty Cycle Definition; DC = t2/t1

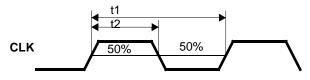
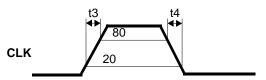
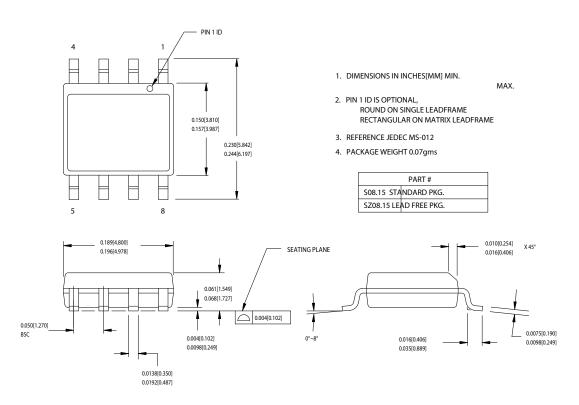



Figure 4. Rise and Fall Time Definitions

Ordering Information


Ordering Code	Package Type	Operating Range	Operating Voltage
CY24115SC-1 ^[4]	8-pin SOIC	Commercial	3.3V
CY24115SC-1T ^[4]	8-pin SOIC - Tape and Reel	Commercial	3.3V
CY24115SC-2 ^[4]	8-pin SOIC	Commercial	3.3V
CY24115SC-2T ^[4]	8-pin SOIC - Tape and Reel	Commercial	3.3V
Pb-Free	•	·	
CY24115SXC-1 ^[4]	8-pin SOIC	Commercial	3.3V
CY24115SXC-1T ^[4]	8-pin SOIC - Tape and Reel	Commercial	3.3V
CY24115SXC-2 ^[4]	8-pin SOIC	Commercial	3.3V
CY24115SXC-2T ^[4]	8-pin SOIC - Tape and Reel	Commercial	3.3V
CY24115KSXC-2	8-pin SOIC	Commercial	3.3V
CY24115KSXC-2T	8-pin SOIC - Tape and Reel	Commercial	3.3V

Note
4. Not recommended for new designs.

Package Drawing and Dimensions

Figure 5. 8-Lead (150-Mil) SOIC S8

51-85066-*C

Document History Page

	Document Title: CY24115 MediaClock™ Mini Disc Clock Generator Document Number: 38-07275					
Revision	ECN No.	Orig. of Change	Submission Date	Description of Change		
**	110767	CKN	02/06/02	New Data Sheet		
*A	113515	CKN	04/30/02	Changed from Preliminary to Final P. 2 in Electrical Characteristics table added (source) to row 1 and (sink) to row 2		
*B	121884	RBI	12/14/02	Power up requirements added to Operating Conditions Information		
*C	252154	RGL	08/26/04	Added Lead Devices		
*D	2441946	AESA	05/15/08	Updated template. Added Note "Not recommended for new designs." Added part number CY24115KSXC-2, and CY24115KSXC-2T in ordering information table.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSoC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2004-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-07275 Rev. *D

Revised May 15, 2008

Page 6 of 6