

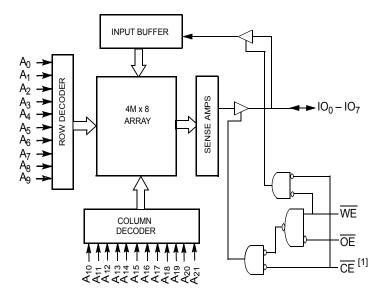
32-Mbit (4 M × 8) Static RAM

Features

- High Speed
 □ t_{AA} = 12 ns
- Low Active Power
 □ I_{CC} = 250 mA at 12 ns
- Low CMOS Standby Power
 □ I_{SB2} = 50 mA
- Operating Voltages of 3.3 ± 0.3 V
- 2.0 V Data Retention
- Automatic Power Down when Deselected
- TTL Compatible Inputs and Outputs
- Available in Pb-free 48-ball FBGA Package

Functional Description

The CY7C1079DV33 is a high performance CMOS Static RAM organized as 4,194,304 words by 8 bits.


To write to the device, take Chip Enable $(\overline{CE}^{[1]})$ and Write Enable (\overline{WE}) input LOW. Data on the eight I/O pins $(I/O_0$ through I/O₇) is then written into the location specified on the address pins $(A_0$ through A_{21}).

To read from the device, take Chip Enable $(\overline{CE}^{[1]})$ LOW and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins. See Truth Table (Single Chip Enable) on page 9 for a complete description of Read and Write modes.

The input and output pins (I/O₀ through I/O₇) are placed in a high impedance state when the device is deselected ($\overline{CE}^{[1]}$ HIGH), the outputs are disabled (\overline{OE} HIGH), or during a write operation ($\overline{CE}^{[1]}$ LOW and \overline{WE} LOW).

The CY7C1079DV33 is available in a 48-ball FBGA package.

Logic Block Diagram

Note

BGA packaged device is offered in single CE and dual CE options. In this data sheet for a dual CE device, CE refers to the internal logical combination of CE₁ and CE₂ such that when CE₁ is LOW and CE₂ is HIGH, CE is LOW. For all other cases CE is HIGH.

CY7C1079DV33

Contents

Selection Guide	3
Pin Configuration	3
Maximum Ratings	
Operating Range	
DC Electrical Characteristics	
Capacitance	
Thermal Resistance	
Data Retention Characteristics	5
AC Switching Characteristics	
Switching Waveforms	
Truth Table (Single Chip Enable)	
Truth Table (Dual Chip Enable)	

Ordering Information	10
Ordering Code Definitions	
Package Diagrams	
Acronyms	
Document Conventions	
Units of Measure	
Document History Page	13
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC Solutions	14

Selection Guide

Description	-12	Unit
Maximum Access Time	12	ns
Maximum Operating Current	250	mA
Maximum CMOS Standby Current	50	mA

Pin Configuration

Figure 1. 48-ball FBGA (Single Chip Enable) [2]

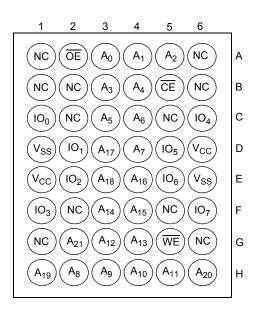
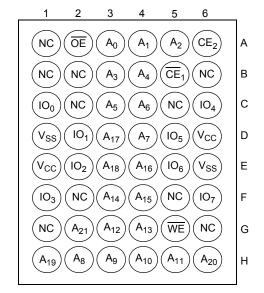



Figure 2. 48-ball FBGA (Dual Chip Enable) [2]

Note

^{2.} NC pins are not connected to the die.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested. Storage Temperature-65 °C to +150 °C Ambient Temperature with Supply Voltage on $\rm V_{CC}$ Relative to GND $^{[3]}..-0.5~\rm V$ to +4.6 $\rm V$ DC Voltage Applied to Outputs in High Z State $^{[3]}.....-0.5$ V to V $_{\rm CC}$ + 0.5 V DC Input Voltage $^{[3]}$ –0.5 V to V $_{\rm CC}$ + 0.5 V

20 mA
>2001 V
> 200 mA

Operating Range

Range	Range Ambient Temperature	
Industrial	–40 °C to +85 °C	$3.3~V\pm0.3~V$

DC Electrical Characteristics

Over the Operating Range

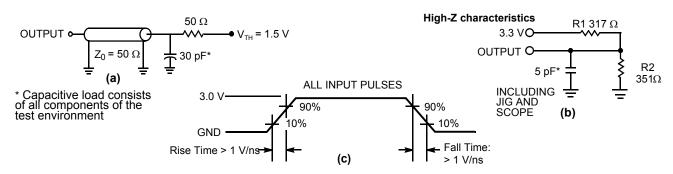
Darameter	Description	Test Conditions		Unit	
Parameter	Description	Test Conditions	Min	Max	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min, I _{OH} = -4.0 mA	2.4	_	V
V _{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 8.0 mA	-	0.4	V
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage [3]		-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	– 1	+1	μА
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Output disabled	– 1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	V_{CC} = Max, f = f_{MAX} = $1/t_{RC}$, I_{OUT} = 0 mA CMOS levels	_	250	mA
I _{SB1}	Automatic CE Power Down Current — TTL Inputs	$\begin{aligned} &\text{Max V}_{CC}, \ \overline{CE}^{\ [4]} \geq \text{V}_{IH}, \\ &\text{V}_{IN} \geq \text{V}_{IH} \text{ or V}_{IN} \leq \text{V}_{IL}, \ f = f_{MAX} \end{aligned}$	_	60	mA
I _{SB2}	Automatic CE Power Down Current —CMOS Inputs	$\begin{aligned} &\text{Max V}_{CC}, \ \overline{CE}^{[4]} \geq \text{V}_{CC} - 0.3 \text{ V}, \\ &\text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{ V}, \text{ or V}_{IN} \leq 0.3 \text{ V}, \text{ f} = 0 \end{aligned}$	-	50	mA

Document Number: 001-50282 Rev. *D Page 4 of 14

V_{IL} (min) = -2.0 V and V_{IH}(max) = V_{CC} + 2 V for pulse durations of less than 20 ns.
 BGA packaged device is offered in single CE and dual CE options. In this data sheet, for a dual CE device, CE refers to the internal logical combination of CE₁ and CE₂ such that when CE₁ is LOW and CE₂ is HIGH, CE is LOW. For all other cases CE is HIGH.

Capacitance

Tested initially and after any design or process changes that may affect these parameters.

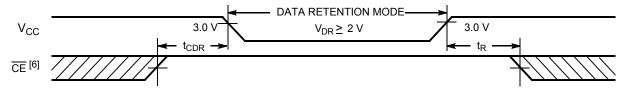

Parameter	Description	Test Conditions	48-ball FBGA	Unit
C _{IN}	Input Capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	16	pF
C _{OUT}	I/O Capacitance		20	pF

Thermal Resistance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	48-ball FBGA	Unit	
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still air, soldered on a 3 × 4.5 inch, four layer printed circuit board	30.91	°C/W
ΘJC	Thermal Resistance (Junction to Case)		13.60	°C/W

Figure 3. AC Test Loads and Waveforms^[5]



Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Тур	Max	Unit
V_{DR}	V _{CC} for Data Retention		2	_	_	V
I _{CCDR}	Data Retention Current	$V_{CC} = 2 \text{ V}, \overline{CE}^{[6]} \ge V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	_	-	50	mA
t _{CDR} ^[7]	Chip Deselect to Data Retention Time		0	_	_	ns
t _R ^[8]	Operation Recovery Time		t _{RC}	_	_	ns

Figure 4. Data Retention Waveform

- Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0 V). 100 μs (t_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation begins including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0 V) voltage.

 BGA packaged device is offered in single CE and dual CE options. In this data sheet, for a dual CE device, CE refers to the internal logical combination of CE₁ and CE₂ such that when CE₁ is LOW and CE₂ is HIGH, CE is LOW. For all other cases CE is HIGH.

 Tested initially and after any design or process changes that may affect these parameters.
- 8. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50 \,\mu s$ or stable at $V_{CC(min.)} \ge 50 \,\mu s$.

AC Switching Characteristics

Over the Operating Range [9]

Damana atau	Description	_	12	11:4
Parameter	Description	Min	Max	Unit
Read Cycle		•		
t _{power}	V _{CC} (Typical) to the First Access ^[10]	100	_	μS
t _{RC}	Read Cycle Time	12	_	ns
t _{AA}	Address to Data Valid	_	12	ns
t _{OHA}	Data Hold from Address Change	3	_	ns
t _{ACE}	CE [11]LOW to Data Valid	_	12	ns
t _{DOE}	OE LOW to Data Valid	_	7	ns
t _{LZOE}	OE LOW to Low Z	1	_	ns
t _{HZOE}	OE HIGH to High Z [12]	_	7	ns
t _{LZCE}	CE LOW to Low Z [11, 12]	3	_	ns
t _{HZCE}	CE HIGH LOW to High Z [11, 12]	_	7	ns
t _{PU}	CE LOW HIGH to Power Up [11, 13]	0	_	ns
t _{PD}	CE HIGH LOW to Power Down [11, 13]	_	12	ns
Write Cycle [14, 15]		•		
t _{WC}	Write Cycle Time	12	_	ns
t _{SCE}	CE [11] LOW HIGH to Write End	9	_	ns
t _{AW}	Address Setup to Write End	9	_	ns
t _{HA}	Address Hold from Write End	0	_	ns
t _{SA}	Address Setup to Write Start	0	_	ns
t _{PWE}	WE Pulse Width		_	ns
t _{SD}	Data Setup to Write End	7	_	ns
t _{HD}	Data Hold from Write End	0	_	ns
t _{LZWE}	WE HIGH to Low Z [12]	3	_	ns
t _{HZWE}	WE LOW to High Z ^[12]	_	7	ns

Notes

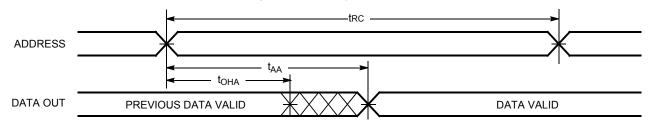
9. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V. Test conditions for the read cycle use output loading shown in part a) of Figure 3 on page 5, unless specified otherwise.

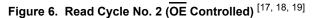
10. \$\(\text{PoWER}\) gives the minimum amount of time that the power supply is at typical \$V_{CC}\$ values until the first memory access is performed.

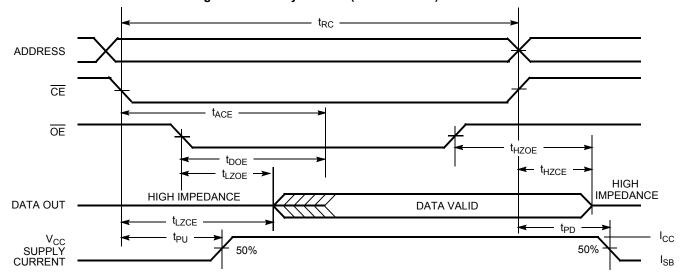
11. BGA packaged device is offered in single CE and dual CE options. In this data sheet, for a dual CE device, \(\text{CE}\) refers to the internal logical combination of \(\text{CE}_1\) and \(\text{CE}_2\) such that when \(\text{CE}_1\) is LOW and \(\text{CE}_2\) is HIGH, \(\text{CE}\) is LOW. For all other cases \(\text{CE}\) is HIGH.

12. \$\(\text{t}_{HZOE}\), \(\text{t}_{HZOE}\), \(\text{t}_{LZCE}\), and \(\text{t}_{LZWE}\) are specified with a load capacitance of 5 pF as in (b) of Figure 3 on page 5. Transition is measured \$\pma200 \text{ mV}\) from steady state voltage.

13. These parameters are guaranteed by design and are not tested.


14. The internal write time of the memory is defined by the overlap of \(\text{WE}\), \(\text{CE} = V_{|L}\). \(\text{CE}\) and \(\text{WE}\) are LOW to initiate a write, and the transition of any of these signals can terminate. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.


15. The minimum write cycle time for Write Cycle No. 2 (\(\text{WE}\) controlled, \(\text{OE}\) LOW) is the sum of \(\text{t}_{HZWE}\) and \(\text{t}_{SD}\).



Switching Waveforms

Figure 5. Read Cycle No. 1 [16, 17]

^{16.} The device is continuously selected. $\overline{CE} = V_{|L}$. 17. \overline{WE} is HIGH for read cycle.

^{18.} BGA packaged device is offered in single CE and dual CE options. In this data sheet, for a dual CE device, $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. For all other cases $\overline{\text{CE}}$ is HIGH.

19. Address valid before or similar to $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled) $^{[20,\ 21,\ 22]}$

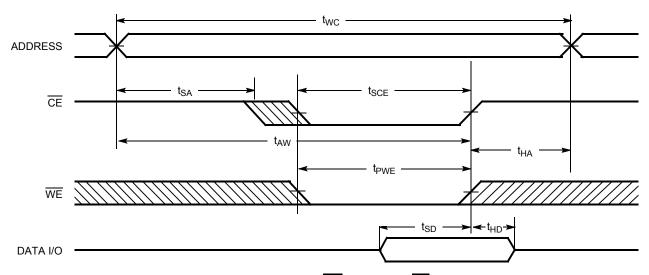
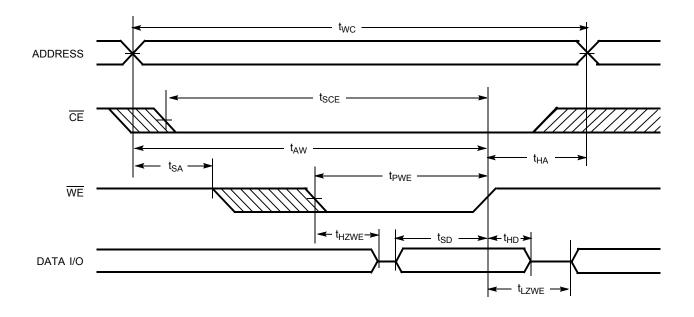



Figure 8. Write Cycle No. 2 (WE Controlled, OE LOW) [20, 21, 22]

^{20.} BGA packaged devi<u>ce</u> is offered in single CE and d<u>ual</u> CE options. In this data shee<u>t, f</u>or a dual CE device, $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. For all other cases $\overline{\text{CE}}$ is HIGH.

21. Data I/O is high impedance if $\overline{\text{OE}} = \underline{\text{V}}_{\text{H}}$.

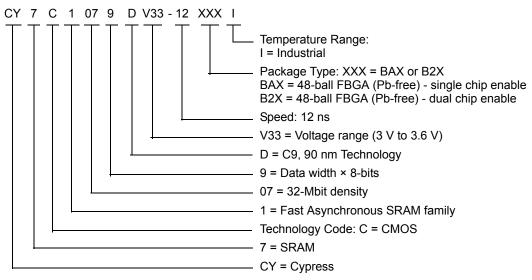
22. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high impedance state.

Truth Table (Single Chip Enable)

CE [1]	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Х	High Z	Power Down	Standby (I _{SB})
L	L	Н	Data Out	Read All Bits	Active (I _{CC})
L	Х	L	Data In	Write All Bits	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Truth Table (Dual Chip Enable)

CE ₁	CE ₂	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	X	Χ	High Z	Power Down	Standby (I _{SB})
Х	L	Χ	Х	High Z	Power Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read All Bits	Active (I _{CC})
L	Н	Х	L	Data In	Write All Bits	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})



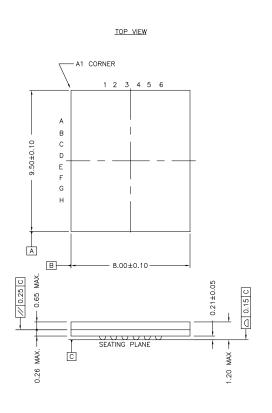
Ordering Information

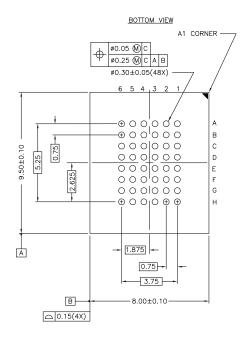
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1079DV33-12BAXI	51-85191	48-ball FBGA (8 × 9.5 × 1.2 mm) (Pb-free) [23]	Industrial
12	CY7C1079DV33-12B2XI	51-85191	48-ball FBGA (8 × 9.5 × 1.2 mm) (Pb-free) [24]	Industrial

Contact sales for part availability.

Ordering Code Definitions

Notes


^{23.} This BGA package is offered with single chip enable.


^{24.} This BGA package is offered with dual chip enable.

Package Diagrams

Figure 9. 48-ball FBGA (8 × 9.5 × 1.2 mm), 51-85191

51-85191 *A

Acronyms

Acronym	Description
CE	chip enable
CMOS	complementary metal oxide semiconductor
FPBGA	fine-pitch ball grid array
I/O	input/output
ŌĒ	output enable
SRAM	static random access memory
TTL	transistor transistor logic
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
ns	nano seconds
V	Volts
μA	micro Amperes
μs	micro seconds
mV	milli Volts
mA	milli Amperes
ms	milli seconds
mm	milli meter
MHz	Mega Hertz
pF	pico Farad
W	Watts
%	percent
Ω	ohms
°C	degree Celcius

Document History Page

REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change
**	2711136	05/29/2009	VKN/PYRS	New Data sheetAdded -45B2XI part (Dual CE option)
*A	2759408	09/03/2009	VKN/AESA	Removed 10ns speed Marked thermal specs as "TBD" Changed t _{DOE} , t _{HZOE} , t _{HZCE} , t _{HZWE} specs from 6 ns to 7ns Added -12B2XI part (Dual CE option)
*B	2813370	11/23/2009	VKN	Changed I _{CC} spec from 225 mA to 250 mA
*C	3132969	01/11/2011	PRAS	Added Ordering Code Definitions. Updated Package Diagrams. Added Acronyms and Units of Measure. Changed all instances of IO to I/O. Updated in new template.
*D	3232668	04/18/2011	PRAS	Changed status from Preliminary to Final. Updated Pin Configuration (Figure 2). Updated Thermal Resistance.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

Automotive
Clocks & Buffers
Interface
Lighting & Power Control

Memory
Optical & Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc

> cypress.com/go/memory cypress.com/go/image cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

cypress.com/go/plc

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-50282 Rev. *D Revised April 27, 2011 Page 14 of 14