

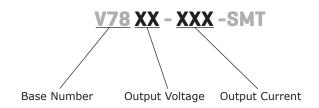
date 09/06/2012

page 1 of 8

SERIES: V78-500-SMT | **DESCRIPTION:** NON-ISOLATED SWITCHING REGULATOR

FEATURES

- 1 A current output
- high efficiency up to 92%
- no heat sink required
- SMT package
- remote on/off control
- low ripple and noise
- short circuit protection, thermal shutdown
- wide temperature (-40°C~+85°C)



MODEL		ıput Itage	output voltage	output current	output power	ripple and noise ¹	effic	iency
	typ (Vdc)	range (Vdc)	(Vdc)	(mA)	max (W)	max (mVp-p)	Vin min (%)	Vin max (%)
V7803-500-SMT	12	4.5 ~ 28	3.3	500	2.5	25	90	75
V7805-500-SMT	12	6 ~ 28	5	500	3.3	25	94	81
V7812-500-SMT	24	14 ~ 28	12	500	5	25	95	90
V7815-500-SMT	24	17 ~ 28	15	500	6.5	25	96	92

Notes: 1. ripple & noise are measured at 20 MHz BW with 10 μF ceramic cap and 100 μF electrolytic capacitors on the output

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
	3.3 V output	4.5	12	28	Vdc
innut valtasa	5 V output	6	12	28	Vdc
input voltage	12 V output	14	24	28	Vdc
	15V output	17	24	28	Vdc
input filter	capacitor		10		μF
remote on/off shutdown threshold voltage		1.1	1.25	1.4	Vdc
on/off control current	on: open or 1.5 <vc≤5v off: GND or 0V<vc<1v< td=""><td></td><td>2</td><td></td><td>μΑ</td></vc<1v<></vc≤5v 		2		μΑ

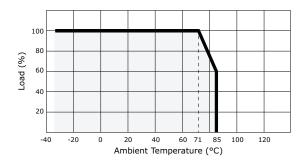
OUTPUT

parameter	conditions/description	min	typ	max	units
line regulation	measured from low line to high line at 100% load		±0.2	±0.5	%
load regulation	measured from 10% to full load at nominal input		±0.3	±0.75	%
voltage accuracy	measured from low line to high line at 100% load		±2	±3	%
temperature coefficient				±0.02	%/°C

1. output voltage adjustment must meet Vin-Vo > 2V requirement

PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection	continuous, automatic recovery				
thermal shutdown	internal IC junction		160		°C
current limit			1.8		Α

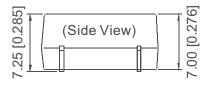

SAFETY AND COMPLIANCE

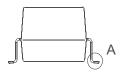
parameter	conditions/description	min typ	max	units
RoHS compliant	yes			
MTBF	25°C (MIL-HDBK-217K)	2,000,000		hours

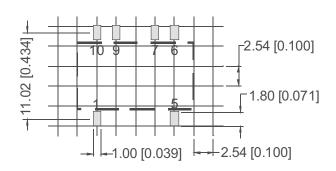
ENVIRONMENTAL

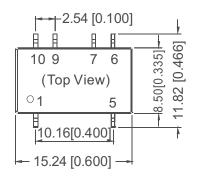
parameter	conditions/description	min	typ	max	units
case operating temperature				100	°C
operating temperature		-40		85	°C
storage temperature		-55		125	°C
storage humidity				95	%
lead temperature	1.5 mm from the case for 10 seconds			260	°C

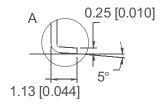
DERATING CURVES

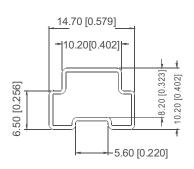

MECHANICAL


parameter	conditions/description	min	typ	max	units
dimensions	0.600 x 0.466 x 0.285 (15.24 x 11.82 x 7.25 mm)				inch
case material	Plastic (UL94-V0)				
weight			2.3		g


MECHANICAL DRAWING

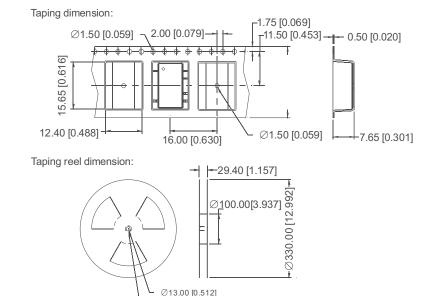

units: mm [in]


pin tolerance: ± 0.10 mm [± 0.004 in] general tolerance: ± 0.25 mm [± 0.010 in]



PIN CONNECTIONS				
1	Vin			
5	Vout			
6	Vadj			
7	GND			
9	GND			
10	On/Off			

PACKAGING DIMENSIONS



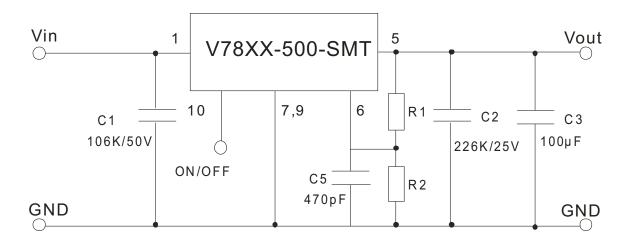
Note:

Unit:mm[inch]

General tolerances: ± 0.50mm[± 0.020inch]

L=530mm[20.866inch] Tube Quantity: 33pcs L=220mm[8.661inch] Tube Quantity: 13pcs

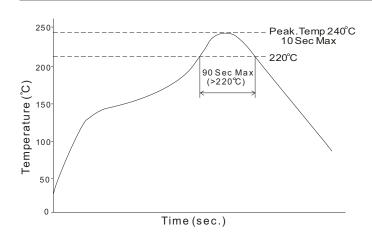
Note: Unit:mm[inch]


General tolerances: ±0.50mm[±0.020inch]

Ø21.50 [0.846]

Devices per reel quantity:500pcs

TYPICAL APPLICATION CIRCUIT

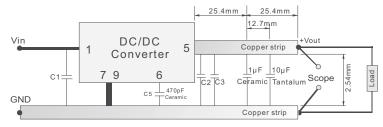

Choose a ceramic type capacitors; C3 is required. for best performance, use a 100 F or more capacitor please.

- 1. C1, C2: Use ceramic capacitors; C3: Use a 100 μF or more capacitor.
- 2. C1 and C2 are required and should be placed close to the pins of the converter, with shortest possible leads.
- 3. No parallel connection or plug and play.

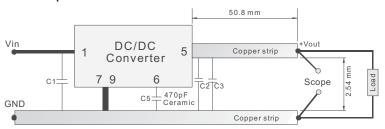
SOLDER REFLOW PROFILE

EXTERNAL CAPACITOR TABLE

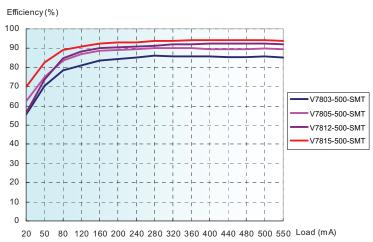
Part Number	C1 (ceramic capacitor)	C2 (ceramic capacitor)
V7803-500-SMT	10uF/50V	22uF/16V
V7805-500-SMT	10uF/50V	22uF/16V
V7812-500-SMT	10uF/50V	10uF/25V
V7815-500-SMT	10uF/50V	10uF/25V

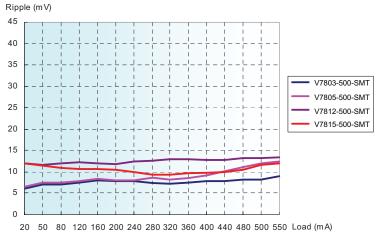

OUTPUT TRIMMING

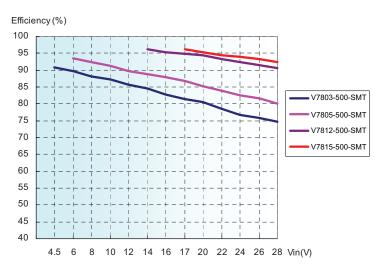
	.,	Trim Down	Trim Up
Part Name	Vo nom	R1(KΩ)	R2(KΩ)
\/7000 F00 CMT	2.21/	_ 61*Vo-75.10	_ 75.10-10*Vo
V7803-500-SMT	3.3V	= 3.3-Vo	Vo-3.3
V7805-500-SMT	5.0V	_ 61*Vo-91.52	_ 91.52-10*Vo
V / 605-500-5IVI I	5.00	5.0-Vo	Vo-5.0
V7812-500-SMT	12V	71*Vo-287.02	_287.02-20*Vo
V / 6 12-500-5 WIT	120	12-Vo	- Vo-12
V7815-500-SMT	45)/	_ 66*Vo-269.37	_269.37-15*Vo
V / 6 13-300-SIVI I	15V	15-Vo	Vo-15

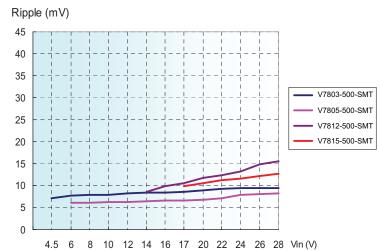

To trim the output of the device input the desired output voltage (Vo) into the proper equation. R1 trims the output voltage down and R2 trims the voltage up. If not using the trim feature place a 470pF ceramic capacitor between pin 6 and GND. Make sure that the desired output voltage is within the trim range.

TEST CIRCUIT


1) Efficiency and Output Voltage Ripple Test

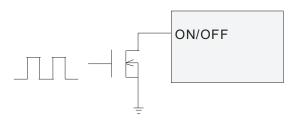

2) Start-up and Load Transient Response Test


EFFICIENCY AND RIPPLE

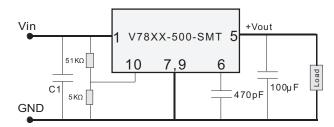

Efficiency VS Output Load (Vin=Norm)

Output Voltage Ripple VS Output Load (Vin=Norm)

Efficiency VS Input Voltage (Full Load)

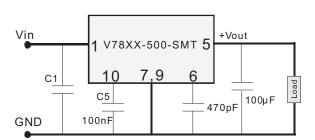


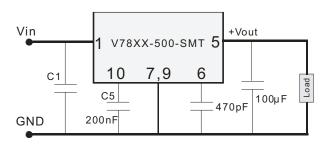
Output Voltage Ripple VS Input Voltage (Full Load)

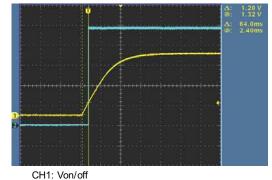

SHUTDOWN CONTROL

The ON/OFF pin provides several features for adjusting and sequencing the power supply, a user has the flexibility of using the ON/OFF pin as:

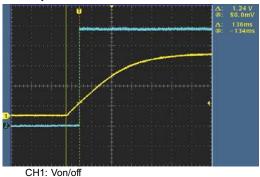
1) A digital on/off control by pulling down the ON/OFF pin with an open-drain transistor.




2) Line UVLO. If desired to achieve a UVLO voltage, a resistor divider from Vin to ON/OFF to GND can be used to disable the converter until a higher input voltage is achieved. For example, it is not useful for a converter with 12V output to start up with a 12V input, as the output cannot each regulation. To enable the converter when the input voltage reaches 14V, a $51k\Omega/5k\Omega$ voltage divider from Vin to GND can be connected to the ON/OFF pin. Both the precision 1.25V threshold and 150mV hysteresis are multiplied by the resistor ratio, providing a proportional 12% hysteresis for any startup threshold. So, the turn off threshold would be between 12.3V to 15.7V.



3) Power supply sequencing. By connecting a small capacitor from ON/OFF to GND, the 2µA current source and 1.25V threshold can provide a stable and predictable delay between startup of multiple power supplies. For example, a startup delay of roughly 64mS is provided using


100nF, and roughly 136mS by using 200nF.

CH2: Vo Delay time: 64mS

CH2: Vo Delay time: 136mS

REVISION HISTORY

rev.	description	date
1.0	initial release	01/04/2008
1.01	new template applied	04/28/2009
1.02	V-Infinity branding removed	09/06/2012

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.