

0912-45

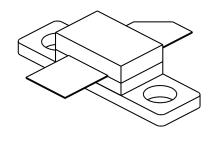
45 Watts, 50 Volts, Pulsed Avionics 960 - 1215 MHz

GENERAL DESCRIPTION

The 0912-45 is a COMMON BASE bipolar transistor. It is designed for pulsed systems in the frequency band 960-1215 MHz. The device has gold thin-film metallization for proven highest MTTF. The transistor includes input prematch for broadband capacity. Low thermal resistance package reduces junction temperature, extends life.

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C² 225 Watts


Maximum Voltage and Current

BVcesCollector to Base Voltage60 VoltsBVeboEmitter to Base Voltage4.0 VoltsIcCollector Current4.5 Amps

Maximum Temperatures

Storage Temperature $- 65 \text{ to} + 150^{\circ}\text{C}$ Operating Junction Temperature $+ 200^{\circ}\text{C}$

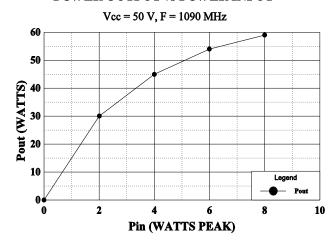
CASE OUTLINE 55CX, STYLE 1

ELECTRICAL CHARACTERISTICS @ 25 °C

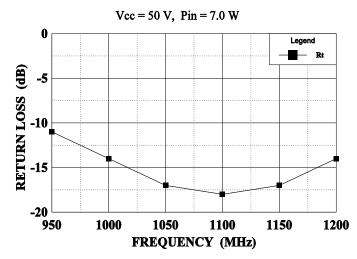
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Pout Pin Pg ² ηc VSWR ²	Power Out Power Input Power Gain Collector Efficiency Load Mismatch Tolerance	F = 960-1215 MHz Vcc = 50 Volts PW = 10 µsec DF = 1% F = 1090 MHz	45 8.0	9.0 45	7.0 10:1	Watts Watts dB %

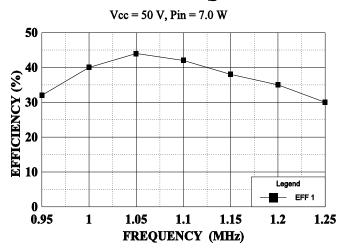
BVebo	Emitter to Base Breakdown	Ie = 25 mA	4.0			Volts
BVces	Collector to Emitter Breakdown	Ic = 75 mA	60			Volts
Cob	Capacitance Collector to Base	Vcb = 50V		20		pF
$\mathbf{h}_{\mathbf{FE}}$	DC - Current Gain	Ic = 300 mA, Vce = 5 V	10			
$\frac{\mathbf{h}_{\mathrm{FE}}}{\theta\mathbf{j}\mathbf{c}^2}$	Thermal Resistance				0.8	°C/W

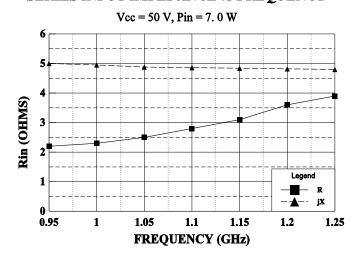
Note 1: At rated output power and pulse conditions

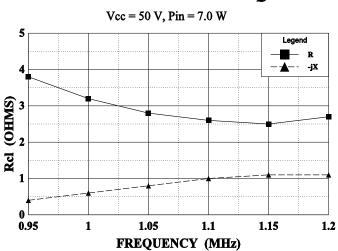

2: At rated pulse conditions

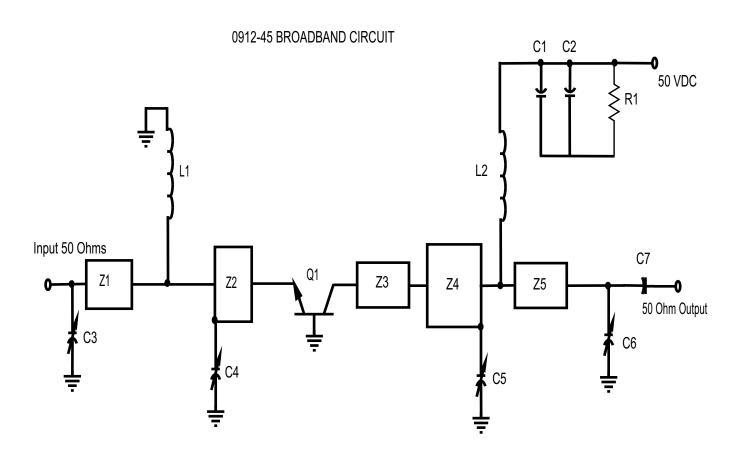
Initial Issue June, 1994


GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHz RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.


POWER OUTPUT vs POWER INPUT


WIDEBAND CIRCUIT INPUT RETURN LOSS


EFFICIENCY vs **FREQUENCY**


SERIES INPUT IMPEDANCE vs FREQUENCY

SERIES LOAD IMPEDANCE vs FREQUENCY

PC Board Material .010" Dielectric Teflon Fiberglass

Z1=50 , .08 , = .027"w X .59"L Z2=2.7	C1=Capacitor 100 pF "B" (100mil) ATC C2=Capacitor 68mfd, 75V Electrolytic C3, C4, C5, C6= Capacitor .35-3.5pF Piston Trimmer C4=Capacitor 47pF "B" (100mil) ATC R1= Resistor, 15WK 1/4W Q1=GHz Transistor 0912-45
Z5=50 , .075 , =.027"w X .56"L L1= Inductor #14 wire, 0.7" long L2= Inductor #18 wire, 1.5" long	All electrical lengths taken at 1.09 GHz

All electrical lengths taken at 1.09 GHz