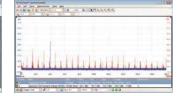
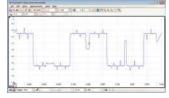


PicoScope[®] 3000 Series

HIGH-PERFORMANCE 4-CHANNEL OSCILLOSCOPES

Fast, space-saving and USB-powered


Serial decoding • Mask limit testing • Segmented memory



128 MS buffer memory

Serial decoding

200 MHz spectrum analyzer

Arbitrary waveform generator

200 MHz bandwidth 128 MS deep memory 1 GS/s real-time sampling 10 GS/s repetitive sampling Advanced digital triggering 200 MHz spectrum analyzer Function generator & AWG USB 2.0 Hi-Speed Flexible power

Supplied with a full SDK including example programs • Software compatible with Windows XP, Windows Vista and Windows 7 • Free technical support

High-end features as standard

PicoScope: power, portability and versatility

Pico Technology continues to push the limits of USB-powered oscilloscopes. The new PicoScope 3000 Series offers the highest performance available

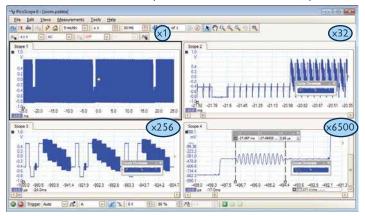
from any USB-powered oscilloscope on the market today.

The PicoScope 3000 Series has the power and performance for many applications, such as design, research, test, education, service and repair.

Pico USB-powered oscilloscopes are also small, light and portable. They easily slip into a laptop bag making them ideal for the engineer on the move. The new

PicoScope 3000 series 4-channel oscilloscopes feature flexible power options, giving you the option of powering the scope from two USB ports, so you can leave the power supply behind when using the device in the field.

High bandwidth, high sampling rate


Unlike most USB-powered oscilloscopes, with real-time sampling rates of only 100 or 200 MS/s, the PicoScope 3000 Series delivers a marketleading 1 GS/s. ETS mode boosts the maximum effective sampling rate further to 10 GS/s, enabling even finer time resolution when used with repetitive signals.

Deep memory

The PicoScope 3000 Series offers memory depths up to 128 million samples, more than any other oscilloscopes in this price range.

Other oscilloscopes have high maximum sampling rates, but without deep memory they cannot sustain these rates on long timebases. The PicoScope 3406B can sample at 1 GS/s at timebases all the way down to 10 ms/div.

Managing all this data calls for some powerful tools, so PicoScope has a maximum zoom factor of 100 million combined with a choice of two zoom methods. There's a conventional set of zoom controls, plus an overview window that shows you the whole waveform while you zoom

and reposition the display by simply dragging with the mouse.

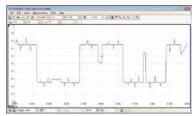
The deep memory can be segmented to store multiple waveforms, and has navigation tools allowing you to review up to 10,000 previous entries. No longer will you see a glitch on the screen only for it to vanish before you stop the scope. A mask can be applied to filter out waveforms of interest.

Advanced triggers

As well as the standard range of triggers found on all oscilloscopes, the PicoScope 3000 Series offers a class-leading set of advanced triggers including pulse width, windowed, dropout and logic triggers to help you capture the

Digital triggering

Most digital oscilloscopes sold today still use an analog trigger architecture based on comparators. This can cause time and amplitude errors that cannot always be calibrated out. The use of comparators often limits the trigger sensitivity at high bandwidths and can also create a long trigger "re-arm" delay.


Since 1991 we have been pioneering the use of fully digital triggering using the actual digitized data. This reduces trigger errors and allows our oscilloscopes to trigger on the smallest signals, even at the full bandwidth. Trigger levels and hysteresis can be set with high precision and resolution.

Digital triggering also reduces re-arm delay and this, combined with the segmented memory, allows the triggering and capture of events that happen in rapid sequence. At the fastest timebase you can use rapid triggering to collect 10,000 waveforms in under 20 milliseconds. The mask limit testing function can then scan through these waveforms to highlight any failed waveforms for viewing in the waveform buffer.

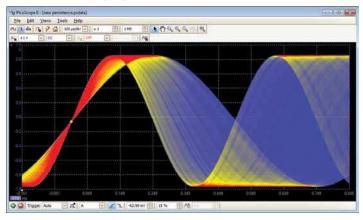
Custom probe settings

The custom probes feature allows you to correct for gain, attenuation, offsets and nonlinearities in special probes, or to convert to different units of measurement (such as current, power or temperature). You can save definitions to disk for later use. Definitions for Pico oscilloscope probes and current clamps are built in.

Arbitrary waveform and function generator

All units have a built-in function generator (sine, square, triangle, DC level) with frequency sweeping capability. Combined with the spectrum peak hold option, this makes a powerful tool for testing amplifier and filter responses.

The B models in the PicoScope 3000 Series also include a full arbitrary waveform generator. Waveforms can be created or modified using the built-in AWG editor, imported from oscilloscope traces, or loaded from a spreadsheet.


Spectrum analyzer

With the click of a button you can display a spectrum plot of the selected channels. The spectrum analyzer allows signals up to 200 MHz to be viewed in the frequency domain. A full range of settings gives you control over the number of spectrum bands, window type and display mode: instantaneous, average, or peak-hold.

You can display multiple spectrum views with different channel selections and zoom factors, and place these alongside time-domain views of the same data. A comprehensive set of automatic frequency-domain measurements, including THD, THD+N, SNR, SINAD and IMD, can be added to the display.

data you need.

Advanced display modes

See old and new data superimposed, with new data in a brighter color or shade. This makes it easy to see glitches and dropouts and to estimate their relative frequency. Choose between analog persistence and digital color, or create a custom display mode.

The design of the PicoScope software ensures that maximum display area is available for waveform viewing. Even with a laptop you have a much bigger viewing area and higher resolution than a typical benchtop scope.

Serial decoding

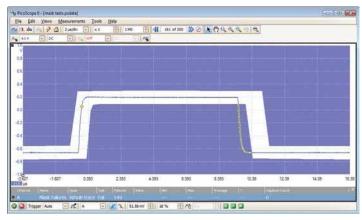
ь,	R. alac	4 2	-	200 m	-	-	H 3	185 k	Name of Street, or other Designation of Street, or other Desig	B	41	1.011	W (5	000	19.	219					
15	A.00	Celle	-		-	-	-	121	100 E		-	-					-				-	
1	1	1000				-			1111	in s the	LUNAL	-	11-10-11		-			-	IS IN ASSA	A LOT LUB!	i. and	
055																						
185				414	Ш				I III					ЦЩ			L.H.K			1		
的			· · · ·	a 113.1		The co			0.0000				a sherr	in her	dia da	100	100	a	1944			
80-1																	100	TRANSFER P			12.1	
iz:																	1	-	photos a	and second second	and the second s	
R.																	1					
5	040		3101		1	185			0.353	05		- 24	165		0.058	-	026	-	195		563	7.531
Ľ	115				- 25				1000	100	S	- 23				- 2			1000		~	
E		-	_	_	_		_			_	_	_		_		_	_	_	_	_	_	
		1.									10100											and the second
2	port	Accumu	ate	View	Unk:	Tion			and the second se	Filter	Statisti	CB .	Search	1.00	Refresh	Clear	1				_	_
-		Dea		- A-					40-48.FF 00 FF 00		100				- J.		100		17.915.40	221.3 44		1
	340	Data	1		-			1.1	\$1.25-52 GA 25 00		1119 6431C	÷.	780					500 Minut		529.748		
	258	Date	14	5	4	91	23	6.0	FIC 98 18:00:00 44		68.78		100		- 2			300 Milliouti		68718		
	ADF.	Dete	1		1	1		1	10 40 50 76 50 87	05.52	1018		Yes					\$50 bitsuf	888.8 ₄₆	1.125 ma		
	400	Date							6110 AT 12 MF 92	06 AL	40.00		744		- 56			300 ktmud	1.122.018	1.362 ma		
5	226	Dete	1		a	4		4	00.40.50.PS		\$796		.798	. 8				100 bitmet	10100	3.077 ma		
1																						2
		Low																				

The deep-memory PicoScope 3000 Series is ideal for serial decoding as it can capture thousands of frames of uninterrupted data.

Protocols currently supported are l^2C , SPI, RS232/UART, CAN, LIN and FlexRay. Expect this list to grow with free software updates.

PicoScope displays the decoded data in the format of your choice: "in view", "in window", or both at once.

"In view" format shows the decoded data beneath the waveform on a common time axis, with error frames marked in red. You can zoom in on these frames to look for noise or distortion on the waveform. "In window" format shows a list of the decoded frames, including the data and all flags and identifiers. You can set up filtering conditions to display only the frames you are interested in, search for frames with specified properties, or define a start pattern that the program will wait for before listing the data. You can also create a spreadsheet to fully decode the hex data into plain text.


High-speed data acquisition/digitizing

The drivers and software development kit supplied allow you to write your own software or interface to popular third-party software packages such as LabVIEW.

If the 128 MS record length isn't enough, the driver supports streaming mode, which captures gap-free continuous data through the USB port directly to the PC's RAM or hard disk at a rate of over 10 MS/s. Maximum speed depends on the PC's capabilities.

Mask limit testing

This feature is specially designed for production and debugging environments. Capture a signal from a known working system, and PicoScope will draw a mask around it with your specified tolerance. Connect the system under test, and PicoScope will highlight any parts of the waveform that fall outside the mask area. The highlighted details persist on the display, allowing the scope to catch intermittent glitches while you work on something else. The measurements window counts the number of failures and can display other measurements and statistics at the same time.

The numerical and graphical mask editors can be used separately or in combination, allowing you to enter accurate mask specifications and to modify existing masks. You can import and export masks as files.

High-end features as standard

Buying a scope from some companies is a bit like buying a car. By the time you have added all the optional extras you need, the price has gone up considerably. With the PicoScope 3000 Series, high-end features such as mask limit testing, serial decoding, advanced triggering, measurements, math, XY, digital filtering and segmented memory are all included in the price.

To protect your investment, both the PC software and firmware inside the unit can be updated. We have a long history of providing new features for free via software downloads. Other companies make vague promises about future enhancements but we deliver on our promises year after year. Users of our products reward us by becoming lifelong customers, frequently recommending us to their colleagues.

Dependable signal integrity

Most oscilloscopes are built down to a price; ours are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Years of oscilloscope experience leads to improved pulse response and bandwidth flatness.

We are proud of the dynamic performance of our products and publish these specifications in detail. The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

PicoScope 3000 Series 4-Channel Oscilloscopes - The PicoScope Di

Oscilloscope controls: Commonly-used controls such as voltage range selection, timebase, memory depth and channel selection are placed on the toolbar for quick access, leaving the main display area clear for waveforms. More advanced controls and functions are located in the **Tools** menu.

Tools>Math channels: Combine input channels and reference waveforms using simple arithmetic, or create custom equations with trigonometric and other functions.

Tools>Serial decoding: Decode multiple serial data signals and display the data alongside the physical signal or as a detailed table.

Tools>Reference channels: Store waveforms in memory or on disk and display them alongside live inputs. Ideal for diagnostics and production testing.

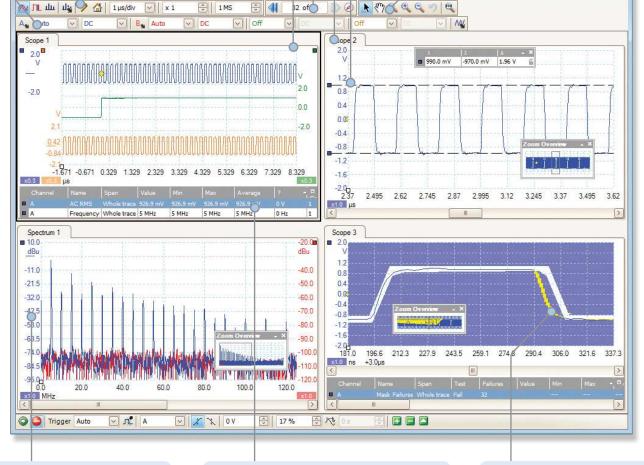
PicoScope 6 - [psw-4views-2scopes-ref-math-spectrum-mask.psdata] <u>File Edit</u> Views <u>M</u>easurements <u>Ioo</u> <u>H</u>elp

Auto setup button: Configures the timebase and voltage ranges for stable display of signals.

PicoScope: the display can be as simple or as complex as you need. Begin with a single view of one channel, and then expand the display to include any number of live channels, math channels and reference waveforms.

Waveform replay tool: PicoScope automatically records up to 10,000 of the most recent waveforms. You can quickly scan through to look for intermittent events.

Views: PicoScope is carefully designed to make the best use of the display area. You can add new scope and spectrum views with automatic or custom layouts.


Rulers: Each axis has two rulers that can be dragged across the screen to make quick measurements of amplitude, time and frequency.

Zoom and pan tools: PicoScope allows a zoom factor of up 100 million, which is necessary when working with the deep memory of the 3000 Series scopes. Either use the zoom-in, zoom-out and pan tools, or click and drag in the zoom overview window for fast navigation.

- - -

Movable axes: The vertical axes can be dragged up and down. This feature is particularly useful when one waveform is obscuring another. There's also an **Auto Arrange Axes** command.

Automatic measurements: Display calculated measurements for troubleshooting and analysis. You can add as many measurements as you need on each view. Each measurement includes statistical parameters showing its variability. **Mask limit testing:** Automatically generate a test mask from a waveform or draw one by hand. PicoScope highlights any parts of the waveform that fall outside the mask and shows error statistics.

PicoScope 3000 Series 4-Channel Oscilloscopes - Specifications

PicoScope 3000 Series	4-Channel	Oscillosco	pes	- Specificatio	ons						
PRODUCT SELECTOR											
MODEL	BANDWIDTH	SAMPLING	G	MEMORY	WA	VEFORM	PROBES SUPPLIED				
PicoScope 3404A	60 MHz	1 GS/s		4 MS	Function	on generator	4				
PicoScope 3404B	60 MHz	1 GS/s		8 MS	Func.	gen. + AWG	4				
PicoScope 3405A	100 MHz	1 GS/s		16 MS		on generator	4				
PicoScope 3405B	100 MHz	/				gen + AWG	4				
PicoScope 3406A	200 MHz	- /				on generator	4				
PicoScope 3406B	200 MHz	1 GS/s		128 MS	Func.	gen. + AWG	4				
MODEL	PicoScope 34	04A/B		PicoScope 3405A/B		PicoSc	cope 3406A/B				
VERTICAL											
Bandwidth (–3 dB)	60 MH	z		100 MHz			200 MHz				
Bandwidth limiting (–3 dB)				20 MHz, switchable							
Rise time (calculated)	5.8 ns	5		3.5 ns			1.75 ns				
Resolution				8 bits							
Input channels				4							
Input characteristics		1	MΩ ±	1%, in parallel with 14	pF±1 pF	-					
nput coupling				AC/DC							
nput sensitivity		10 r	mV/div	v to 4 V/div (10 vertic	al divisio	ns)					
nput ranges			'	0 mV to ±20 V in 9 ra		,					
Analog offset range	$\pm 250 \text{ mV}$ to $\pm 20 \text{ V}$ in 9 ranges $\pm 250 \text{ mV}$ (50 mV, 100 mV, 200 mV ranges)										
(vertical position adjustment)				V (500 mV, 1 V, 2 V r	-						
				V (5 V, 10 V, 20 V ra							
DC accuracy				±3% of full scale	0 /						
Overload protection			Ę		k)						
HORIZONTAL				, ,	,						
for zon factor factor for the factor		1 GS/s/(1 ch) [500 MS/s (2 ch), 250	MS/c/2	or (1, ch)					
Max. effective sampling rate		1 03/3 (r cn), .	100 M3/ S (2 CH), 230	113/3 (3						
(repetitive signals) Sampling rate (cont. USB streaming)	2.5 GS/	/s	>	5 GS/s 10 MS/s (PC depende	nt)		10 GS/s				
Timebase ranges	2 ns/div to 20	$\Omega s/div$		1 ns/div to 200 s/div	-	500 ps/	/div to 200 s/div				
Buffer memory* (A models)	4 MS			16 MS		3 00 p3/	64 MS				
Buffer memory* (B models)	8 MS			32 MS			128 MS				
Waveform buffer (no. of segments)	0113			1 to 10,000			120113				
Timebase accuracy				±50 ppm							
Sample jitter				< 5 ps RMS							
* Shared between active channels											
DYNAMIC PERFORMANCE (typical)											
Crosstalk		Better than 4	400:1 u	up to full bandwidth (e	qual volt	age ranges)					
Harmonic distortion			< -50	dB at 100 kHz full sca	e input						
FDR				52 dB typical							
ADC ENOB				7.6 bits							
Noise		1	80 µV	RMS (on most sensitiv	/e range)						
Pulse response				< 5% overshoot							
Bandwidth flatness		(+0.3 dB, -3	3 dB) a	t scope input, from D	C to full I	bandwidth					
TRIGGER											
Frigger modes		Auto, rep	oeat, si	ngle, none, rapid (segr	nented m	nemory)					
Advanced digital triggers (Ch A to D)	Edge, window	, pulse width, win	dow pu	Ilse width, dropout, wir	ndow dro	pout, interval, l	logic, runt pulse				
rigger sensitivity (Ch A to D)	[Digital triggering	provide	es 1 LSB accuracy up t	o full bar	ndwidth of sco	ре				
1ax. pre-trigger capture			U	o to 100% of capture s	size						
1ax. post-trigger delay				Up to 4 billion sample	s						
rigger re-arm time			<	2 µs on fastest timeba	ise						
1ax. trigger rate		Up	to 10,	000 waveforms in a 2	0 ms bur	st					
XTERNAL TRIGGER INPUT											
rigger types		Edge, p	ulse w	idth, dropout, interval	, logic, de	elayed					
nput characteristics				, 1 M Ω ±1% in parallel							
- Bandwidth	60 MH			100 MHz			200 MHz				
Voltage range				±5 V, DC coupled							
Overvoltage protection			-	100 V (DC + AC peal	k)						

PicoScope 3000 Series 4-Channel Oscilloscopes - Specifications (continued)

MODEL	coScope 3404A/B PicoScope 3405A/B	PicoScope 3406A/B
FUNCTION GENERATOR (all models)		
Output waveforms All mo	lels: Sine, square, triangle, DC voltage. B models: ramp, sinc, Gaussian, h	alf-sine, white noise, PRBS.
Output frequency range	DC to 1 MHz	
Sweep modes	Up, down, dual with selectable start/stop frequencies and inc	rements
Bandwidth	> 1 MHz	
Output frequency accuracy	±50 ppm	
Output frequency resolution	< 0.01 Hz	
Output voltage range	±2 V with ±1% DC accuracy	
Output voltage adjustment	Signal amplitude and offset adjustable in approx. 1 mV steps within ov	verall ± 2 V range
Amplitude flatness	< 0.5 dB to 1 MHz, typical	
SFDR	> 60 dB, 10 kHz full scale sine wave	
Connector type	Front panel BNC with 600 Ω output impedance	
Overvoltage protection	±10 V	
AWG (B models only)	20 MC /-	
Update rate Buffer size	20 MS/s 8 kS 8 kS	16 kS
Resolution		10 K3
	12 bits (output step size approx. 1 mV)	
Bandwidth	> 1 MHz < 100 ns	
Rise time (10 - 90%)	< 100 hs	
PROBE COMPENSATION OUTPUT	1 kHz square wave, 1.6 V pk-pk (typ.), 600 Ω	
SPECTRUM ANALYZER		
Frequency range	DC to 60 MHz DC to 100 MHz	DC to 200 MHz
Display modes	Magnitude, average, peak hold	
Windowing functions	Rectangular, Gaussian, triangular, Blackman, Blackman-Harris, Hammi	ng, Hann, flat-top
Number of FFT points	Selectable from 128 to 1 million in powers of 2	
MATH CHANNELS		
Functions	-x, x+y, x-y, x*y, x/y, x^y, sqrt, exp, In, log, abs, norm, sign, s	in cos tan
	arcsin, arccos, arctan, sinh, cosh, tanh, freq, derivative, integral, min, m	
Operands	A, B, C, D (input channels), T (time), reference waveforms, co	
AUTOMATIC MEASUREMENTS		
Oscilloscope	AC RMS, true RMS, DC average, cycle time, frequency, duty cycle, fall	*
	rising rate, rise time, high pulse width, low pulse width, maximum, minir	• •
Spectrum	Frequency at peak, amplitude at peak, average amplitude at	•
	total power, THD %, THD dB, THD+N, SFDR, SINAD, SNI	
Statistics	Minimum, maximum, average and standard deviation	
SERIAL DECODING	CAN, LIN, FlexRay, I ² C, SPI, and RS232/UART protoc	ols
MASK LIMIT TESTING	Statistics: pass/fail, failure count, total count	
DISPLAY		
Interpolation	Linear or sin(x)/x	
Persistence modes	Digital color, analog intensity, custom, or none	
	o ' o //' '	
GENERAL		
PC connection	USB 2.0 hi-speed	
Power requirements	Powered from 2 USB ports or from AC adaptor supplied (1000	mA at 5 V)
Dimensions	190 x 170 x 40 mm (including connectors)	
Weight	< 0.5 kg	
Temperature range	Operating: 0 °C to 40 °C (20 °C to 30 °C for stated accu	racy)
Safety approvals	Designed to EN 61010-1:2010	
EMC approvals	Tested to ENICION 1.200C and ECC Deut 1E Culment	К
Environmental approvals	Tested to EN61326-1:2006 and FCC Part 15 Subpart	
	RoHS and WEEE compliant	
Software/PC requirements Pi	RoHS and WEEE compliant Scope 6, SDK and example programs. Microsoft Windows XP, Window	
Software/PC requirements Pi Languages (full support):	RoHS and WEEE compliant oScope 6, SDK and example programs. Microsoft Windows XP, Window English, French, German, Italian, Spanish	vs Vista or Windows 7.
Software/PC requirementsPiLanguages (full support):Languages (UI only):SimpleSimple	RoHS and WEEE compliant Scope 6, SDK and example programs. Microsoft Windows XP, Window	vs Vista or Windows 7. , French, German, Greek,

Connections

Your PicoScope 3000 Series oscilloscope kit contains the following items:

- PicoScope 3000 Series oscilloscope
- 4 10:1 probes
- Single-headed USB cable
- Double-headed USB cable
- AC power adapter
- Installation Guide
- Software and Reference CD

High-quality probes

The probes supplied with these oscilloscopes are chosen to obtain the specified system bandwidth.

- MI007 (supplied with PicoScope 3404A/B)
- TA132 (supplied with PicoScope 3405A/B)
- TA131 (supplied with PicoScope 3406A/B)

Software Development Kit

The PicoScope 3000 Series SDK is available for free download. It contains drivers and programming examples in the following languages and development environments:

- C
- C#
- Excel
- LabVIEW

Ordering information

ORDER CODE	DESCRIPTION	£	US\$*	€*
PP846	PicoScope 3404A (60 MHz, func. gen., probes)	599	9 88	725
PP847	PicoScope 3404B (60 MHz, func. gen.+AWG, probes)	749	1236	906
PP848	PicoScope 3405A (100 MHz, func. gen., probes)	899	1483	1088
PP849	PicoScope 3405B (100 MHz, func. gen.+AWG, probes)	1049	1731	1269
PP850	PicoScope 3406A (200 MHz, func. gen., probes)	1199	1978	1451
PP851	PicoScope 3406B (200 MHz, func. gen.+AWG, probes)	1349	2226	1632

pico

Technology

Pico Technology, James House, Colmworth Business Park,
St. Neots, Cambridgeshire, PE19 8YP, United Kingdom
22 +44 (0) 1480 396 395
-44 (0) 1480 396 296

☑ sales@picotech.com

*US\$ and € prices are correct at the time of publication. Please contact Pico Technology for the latest prices before ordering. Errors and omissions excepted. Copyright © 2012 Pico Technology Ltd. All rights reserved.

www.picotech.com

MM037.en-5