

Aluminum electrolytic capacitors

Single-ended capacitors

Series/Type: B43896 Date: December 2010

© EPCOS AG 2011. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Single-ended capacitors

125 °C

Long-life grade capacitors

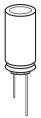
Applications

Automotive (piezo injection)

Features

- High ripple current capability
- Wide temperature range
- Low ESR at 40 °C
- RoHS-compatible

Construction


- Radial leads
- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Minus pole marking on the insulating sleeve
- Stand-off rubber seal
- Case with safety vent

Delivery mode

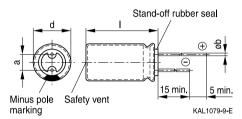
Terminal configurations and packing:

- Bulk
- Taped, Ammo pack
- Cut (see chapter "Single-ended Taping, packing and lead configurations, Cut leads (Chapter B)")
- Kinked (see chapter "Single-ended Taping, packing and lead configurations, Kinked leads (Chapter B)")
- PAPR (protection against polarity reversal): crimped leads, J leads, bent leads

Refer to chapter "Single-ended capacitors Taping, packing and lead configurations" for further details.

B43896

125 °C


Specifications and characteristics in brief

250 V D0	C						
1.1 V _R							
33 140	3 140 µF						
±20%	20% M						
tan d (ma	ax.) = 0.20						
I _{leak} =0	.03 μA • $\left(\frac{C_R}{\mu F} + \right)$	$\left(\frac{V_R}{V}\right)$ + 15 μ	Ą				
Diamete	Diameter (mm) 16 18						
ESL (nH	ESL (nH) 26 34						
> 4000 h	> 4000 h						
DC/C	£ ±30% of ini	tial value					
tan d	£3 times initi	al specified	limit				
I _{leak}	£ initial speci	fied limit					
4000 h							
DC/C	£ ±25% of ini	tial value					
tan d	£2 times initi	al specified	limit				
I _{leak}	£ initial speci	fied limit					
	0068-2-6, test	Fc:					
Frequen	cy range 10 Hz	z 2 kHz, d	lisplacement	t amplitude max.			
,		0,					
Capacitor rigidly clamped by the aluminum case.							
To IEC 60068-1:							
	40/125/56 (40 °C/+125 °C/56 days damp heat test)						
IEC 6038	84-4						
	1.1 V_R 33 34 $\pm 20\%$ tan d (main termination of the second of the se	33 140 μF ±20% M tan d (max.) = 0.20 I _{leak} = 0.03 μA · $\left(\frac{C_R}{\mu F} \cdot Diameter (mm)\right)$ ESL (nH) > 4000 h DC/C £ ±30% of ini tan d £ 3 times initi I _{leak} £ initial speci 4000 h DC/C £ ±25% of ini tan d £ 2 times initi I _{leak} £ initial speci To IEC 60068-2-6, test Frequency range 10 Hz 1.5 mm, acceleration m Capacitor rigidly clamp To IEC 60068-1:	1.1 V_R 33 140 µF $\pm 20\%$ Mtan d (max.) = 0.20I _{leak} = 0.03 µA · $\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ + 15 µDiameter (mm)16ESL (nH)26> 4000 hDC/C £ ±30% of initial valuetan d £ 3 times initial specifiedI _{leak} £ initial specified limit4000 hDC/C £ ±25% of initial valuetan d £ 2 times initial specifiedI _{leak} £ initial specified limitTo IEC 60068-2-6, test Fc:Frequency range 10 Hz 2 kHz, c1.5 mm, acceleration max. 20 g, dtCapacitor rigidly clamped by the alTo IEC 60068-1:40/125/56 (40 °C/+125 °C/56 day)	1.1 V_R 33 140 µF $\pm 20\%$ M tan d (max.) = 0.20 I _{leak} = 0.03 µA · $\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ + 15 µA Diameter (mm) 16 18 ESL (nH) 26 34 > 4000 h DC/C £ ±30% of initial value tan d £ 3 times initial specified limit I _{leak} £ initial specified limit 4000 h DC/C £ ±25% of initial value tan d £ 2 times initial specified limit 4000 h DC/C £ ±25% of initial value tan d £ 2 times initial specified limit To IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement 1.5 mm, acceleration max. 20 g, duration 3 ´ 2 Capacitor rigidly clamped by the aluminum cas To IEC 60068-1: 40/125/56 (40 °C/+125 °C/56 days damp head			

Dimensional drawing

With stand-off rubber seal Diameters (mm): 16, 18

Dimensions and weights

Dimensions (Approx. weight			
d +0.5	1	a ±0.5	b	g
16	20 +2.0	7.5	0.80 ±0.05	5.5
18	20 +2.0	7.5	0.80 ±0.1	8.0
18	25 +2.0	7.5	0.80 ±0.1	9.0
18	31.5 +2.0	7.5	0.80 ±0.1	11.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.5	7.5	0.80 ±0.1	16.0

B43896

125 °C

Overview of available types

V _R (V DC)	250
	Case dimensions d´l (mm)
C _R (mF)	
33	16´20
47	18´20
56	18 ´ 25
68	18´31.5
100	18 ´ 35
140	18 ′ 40

Other voltage and capacitance ratings are available upon request.

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	díl	40 °C	20 °C	20 °C	125 °C	below)
тF	mm	W	W	W	mA	
V _R = 250 V	DC					
33	16 ´ 20	14.260	0.297	0.284	730	B43896C2336M***
47	18 ´ 20	12.170	0.250	0.239	920	B43896C2476M***
56	18 ´ 25	10.380	0.210	0.201	1160	B43896C2566M***
68	18 ´ 31.5	8.595	0.171	0.163	1410	B43896C2686M***
100	18 ´ 35	6.805	0.131	0.125	1650	B43896C2107M***
140	18´40	5.020	0.092	0.088	1900	B43896C2147M***

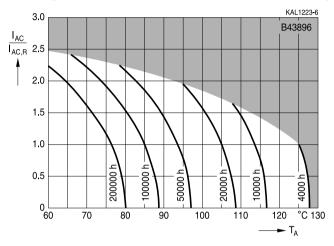
Technical data and ordering codes

Composition of ordering code

*** = Version

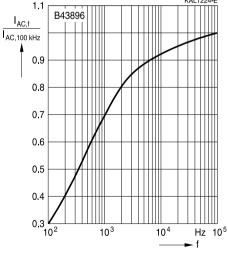
000 = for standard leads, bulk

001 = for kinked leads, bulk


002 = for cut leads, bulk

- 003 = for crimped leads, blister
- 004 = for J leads, blister (for all dimensions, excluding d ´ l = 18 ´ 40 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for all dimensions, excluding d $\,\check{}$ I = 18 $\,\check{}$ 35/40 mm)
- 012 = for bent 90° leads, blister

Useful life

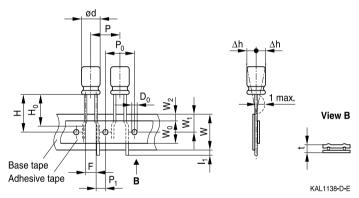

depending on ambient temperature T_A under ripple current operating conditions¹⁾

Frequency factor of permissible ripple current I

AC versus frequency f

Refer to chapter "General technical information, 5.3 Calculation of useful life" for an explanation on how to interpret the useful life graphs. 1)

Taping, packing and lead configurations

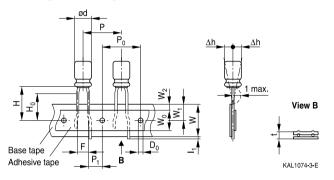

Taping

Single-ended capacitors are available taped in Ammo pack from diameter 4 to 18 mm as follows:

 $\begin{array}{l} \mbox{Lead spacing F} = 2.0\mbox{ mm} \ (\mbox{\sc H} d = 4\ ...\ 5\mbox{ mm}) \\ \mbox{Lead spacing F} = 2.5\mbox{ mm} \ (\mbox{\sc H} d = 4\ ...\ 6.3\mbox{ mm}) \\ \mbox{Lead spacing F} = 3.5\mbox{ mm} \ (\mbox{\sc H} d = 8\mbox{ mm}) \\ \mbox{Lead spacing F} = 5.0\mbox{ mm} \ (\mbox{\sc H} d = 4\ ...\ 12.5\mbox{ mm}) \\ \end{array}$

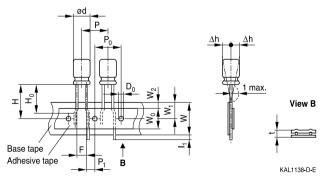
Lead spacing F = 7.5 mm (Æ d = 16 \dots 18 mm).

Lead spacing 2.0 mm (\not Ed = 4 ... 5 mm) Last 3 digits of ordering code: 016



Dimensions in mm

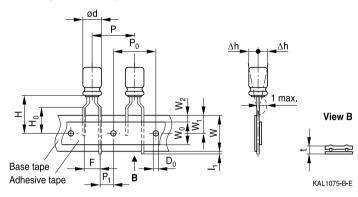
Æd	F	Н	W	W_0	W_1	W_2	Р	P ₀	P ₁	I ₁	t	Dh	D ₀
4 5	2.0	18.5	18.0	7.0	9.0	3.0	12.7	12.7	5.10	1.0	0.7	1	4.0
	+0.8 0.2	±0.75	±0.5	min.	±0.5	max.	±1.0	±0.3	±0.7	max.	±0.2	±1.0	±0.2


Lead spacing 2.5 mm (\not Ed = 4 ... 6.3 mm) Last 3 digits of ordering code: 007

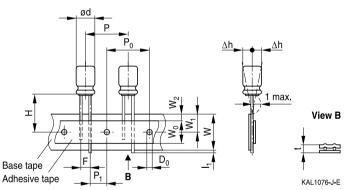
Dimensions in mm

Æd	F	Н	W	W_0	W_1	W_2	H₀	Р	P ₀	P ₁	I ₁	t	Dh	D ₀
4 6.3	2.5	18.5	18.0	5.5	9.0	1.5	16.0	12.7	12.7	5.1	1.0	0.7	1.0	4.0
Toler-	+0.8	+0.75	+0 F	min.	+0 F	may	+0 F	+1.0	-0 2	±0 5	may	+0.2	may	+0.2
rance	0.2	±0.75	±0.5		±0.5	шах.	±0.5	±1.0	±0.2	±0.5	шах.	±0.2	шах.	±0.2

Lead spacing 3.5 mm ($\cancel{E}d = 8 \text{ mm}$) Last 3 digits of ordering code: 006

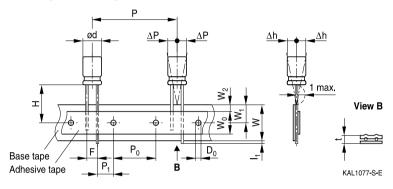

Dimensions in mm

Æd	F	Н	W	W ₀	W ₁	W_2	Р	P ₀	P ₁	l ₁	t	Dh	D ₀
8				10	9.0	3.0	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler- ance	+0.8 0.2	±1.0	±0.5	min.	±0.5	max.	±1.0	±0.3	±0.6	max.	±0.2	max.	±0.2


Leads can also run straight through the taping area. Taping is available up to dimensions d $^{\prime}$ l = 8 $^{\prime}$ 15 mm.

Lead spacing 5.0 mm ($AEd = 4 \dots 8 mm$) Last 3 digits of ordering code: 008

Lead spacing 5.0 mm (\not Ed = 10 ... 12.5 mm) Last 3 digits of ordering code: 008


Dimensions in mm

Æd	F	Н	W	W_0	W_1	W_2	H _o	Р	P ₀	P ₁	I ₁	t	Dh	D_0
4 6.3	5.0	18.5	18.0	5.5	9.0	1.5	16.0	12.7	12.7	3.85	1.0	0.6	1.0	4.0
8		20.0		10.0			16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	12.5	9.0	1.5		12.7	12.7	3.85	1.0	0.6	1.0	4.0
12.5		19.0		12.5				15.0	15.0	5.0				
Toler- ance	+0.8 0.2	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	+0.3 0.2	max.	±0.2

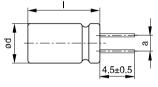
Taping is available up to dimensions d $\acute{}$ I = 12.5 $\acute{}$ 25 mm. Taping is not available for d $\acute{}$ I = 8 $\acute{}$ 20 mm.

Lead spacing 7.5 mm (Æd = 16 ...18 mm) Last 3 digits of ordering code: 009

Dimensions in mm

Æd	F	Н	W	W ₀	W_1	W_2	Р	P ₀	P ₁	I ₁	t	DP	Dh	D_0
16	7.5	18.5	19.0	12.5	0.0	15	20.0	15.0	2 75	10	0.7	0	0	4.0
18	1.5	10.0	10.0	12.5	9.0	1.5	30.0	15.0	3.75	1.0	0.7	0	0	4.0
Toler- ance	±0.8	0.5 +0.75	±0.5	min.	±0.5	max.	±1.0	±0.2	±0.5	max.	±0.2	±1.0	±1.0	±0.2

Taping is available up to dimensions d \cdot I = 16 \cdot 31.5 mm and 18 \cdot 31.5 mm.


Cut or kinked leads

Single-ended capacitors are available with cut or kinked leads. Other lead configurations also available upon request.

Cut leads (Chapter A)

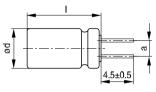
Available for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

Last 3 digits of ordering code: 002

KAL1086-R

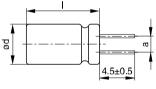
Case size d x I (mm)	Dimensions
	(mm)
	a ±0.5
4 x 7	1.5
5 x 7	2.0
5 x 11	2.0
6.3 x 7	2.5
6.3 x 11	2.5
8 x 7	3.5
8 x 11.5	3.5
8 x 15	3.5
8 x 20	3.5
10 x 12.5	5.0
10 x 16	5.0
10 x 20	5.0
10 x 25	5.0

Case size d x l (mm)	Dimensions
	(mm)
	a ±0.5
12.5 x 16	5.0
12.5 x 20	5.0
12.5 x 25	5.0
12.5 x 31.5	5.0
12.5 x 35.5	5.0
12.5 x 40	5.0
16 x 20	7.5
16 x 25	7.5
16 x 31.5	7.5
16 x 35.5	7.5
16 x 40	7.5
18 x 20	7.5
18 x 25	7.5
18 x 31.5	7.5
18 x 35.5	7.5
18 x 40	7.5



Cut leads (Chapter B)

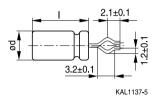
Available for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

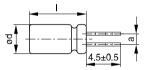

Last 3 digits of ordering code: 002

With stand-off rubber seal

With flat rubber seal

KAL1086-R


Case size	Dimensions (mm)
d´l(mm)	a ±0.5
10 ´ 12.5	5.0
10´16	5.0
10´20	5.0
12.5 ´ 20	5.0
12.5 ´ 25	5.0
16´20	7.5
16 ´ 25	7.5
16´31.5	7.5
16 ´ 35.5	7.5
18´20	7.5
18´25	7.5
18´31.5	7.5
18´35	7.5
18´40	7.5



Kinked leads (Chapter A)

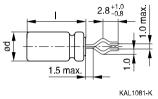
Available for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

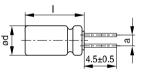
Last 3 digits of ordering code: 001

KAL1084-A

Case size d x I (mm)	Dimensions
	(mm)
	a ±0.5
4 x 7	1.5
5 x 7	2.0
5 x 11	2.0
6.3 x 7	2.5
6.3 x 11	2.5
8 x 7	3.5
8 x 11.5	3.5
8 x 15	3.5
8 x 20	3.5
10 x 12.5	5.0
10 x 16	5.0
10 x 20	5.0
10 x 25	5.0

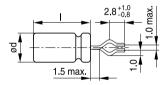
Case size d x I (mm)	Dimensions
· · · · ·	(mm)
	a ±0.5
12.5 x 16	5.0
12.5 x 20	5.0
12.5 x 25	5.0
12.5 x 31.5	5.0
12.5 x 35.5	5.0
12.5 x 40	5.0
16 x 20	7.5
16 x 25	7.5
16 x 31.5	7.5
16 x 35.5	7.5
16 x 40	7.5
18 x 20	7.5
18 x 25	7.5
18 x 31.5	7.5
18 x 35.5	7.5
18 x 40	7.5




Kinked leads (Chapter B)

Available for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

Last 3 digits of ordering code: 001


With stand-off rubber seal

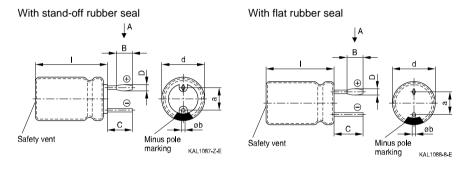
KAL1083-2

With flat rubber seal

KAL1084-A

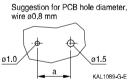
Case size	Dimensions (mm)
d´l(mm)	a ±0.5
10´20	5.0
12.5 ´ 20	5.0
12.5 ´ 25	5.0
16´20	7.5
16 ´ 25	7.5
16´31.5	7.5
16 ´ 35.5	7.5
18´20	7.5
18´25	7.5
18´31.5	7.5
18´35	7.5
18´40	7.5

PAPR leads (Protection Against Polarity Reversal)

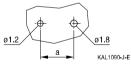

These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 18 mm.

There are three configurations available: Crimped leads, J leads, bent 90° leads

Available for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

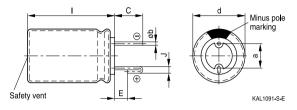

Crimped leads

Last 3 digits of ordering code: 003

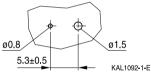


Suggestion for PCB hole diameter

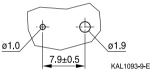
Suggestion for PCB hole diameter, wire ø1.0 mm


Case size	Dimensio	Dimensions (mm)							
d´l(mm)	B ±0.2	C ±0.5	D ±0.1	E ±0.1	a ±0.5	Æb			
16 ´ 20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05			
16 ´ 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05			
16 ´ 31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05			
16 ´ 35.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05			
18´20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18 ´ 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18 ´ 31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18 ´ 35	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			
18´40	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1			

Please readautions and warniagsl Important notes the end of this document.


J leads

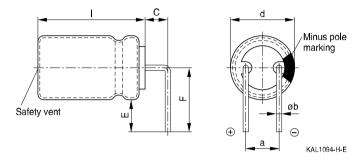
Last 3 digits of ordering code: 004



Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire $\emptyset 0.6 \mbox{ mm}$

Suggestion for PCB hole diameter, wire $\emptyset 0.8 \text{ mm}$

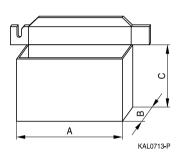


Case size	Dimensions (mm)							
d´l(mm)	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Æb			
10 ´ 12.5	3.2	0.7	1.2	5.0	0.6 ±0.05			
10´16	3.2	0.7	1.2	5.0	0.6 ±0.05			
10´20	3.2	0.7	1.2	5.0	0.6 ±0.05			
12.5 ´ 20	3.2	0.7	1.2	5.0	0.6 ±0.05			
12.5 ´ 25	3.2	0.7	1.2	5.0	0.6 ±0.05			
16´20	3.5	0.7	1.6	7.5	0.8 ±0.05			
16 ´ 25	3.5	0.7	1.6	7.5	0.8 ±0.05			
16 ´ 31.5	3.5	0.7	1.6	7.5	0.8 ±0.05			
16 ´ 35.5	3.5	0.7	1.6	7.5	0.8 ±0.05			
18´20	3.5	0.7	1.6	7.5	0.8 ±0.1			
18 ´ 25	3.5	0.7	1.6	7.5	0.8 ±0.1			
18 ´ 31.5	3.5	0.7	1.6	7.5	0.8 ±0.1			
18 ´ 35	3.5	0.7	1.6	7.5	0.8 ±0.1			

125 °C

Bent 90° leads for horizontal mounting pinning Last 3 digits of ordering code: 012

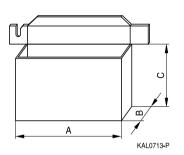
Case size	Dimensions (mm)							
d´l(mm)	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Æb			
16 ´ 20	4.0	4.0	12.0	7.5	0.8 ±0.05			
16 ´ 25	4.0	4.0	12.0	7.5	0.8 ±0.05			
16 ´ 31.5	4.0	4.0	12.0	7.5	0.8 ±0.05			
16 ´ 35.5	4.0	4.0	12.0	7.5	0.8 ±0.05			
18´20	4.0	4.0	13.0	7.5	0.8 ±0.1			
18 ´ 25	4.0	4.0	13.0	7.5	0.8 ±0.1			
18 ´ 31.5	4.0	4.0	13.0	7.5	0.8 ±0.1			
18 ´ 35	4.0	4.0	13.0	7.5	0.8 ±0.1			
18 ´ 40	4.0	4.0	13.0	7.5	0.8 ±0.1			


Bent leads for diameter 12.5 mm available upon request.

Packing units and box dimensions

Ammo pack

Valid for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.


Case size	Dimen	Dimensions (mm)					
díl				units			
mm	A _{max}	B _{max}	C_{max}	pcs.			
4´7	330	50	196	2000			
5´7	330	50	226	2000			
5´11	330	50	226	2000			
6.3 ´ 7	330	50	286	2000			
6.3 ´ 11	330	50	286	2000			
8´7	330	50	246	1000			
8 ´ 11.5	330	50	246	1000			
8 ´ 15	330	50	246	500			
10 ´ 12.5	330	50	196	500			
10´16	330	54	196	500			
10´20	330	58	196	500			
12.5 ´ 20	341	60	272	500			
12.5 ´ 25	341	65	272	500			
16 ´ 25	320	65	270	300			
16 ´ 31.5	315	65	275	300			
18´20	315	65	275	250			
18´25	315	65	275	250			
18´31.5	315	65	275	250			

B43896 125 °C

Ammo pack

Valid for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

Case size d´l	Dimens	Dimensions (mm)					
mm	A _{max}	B _{max}	C _{max}	pcs.			
8 ´ 11.5	345	55	240	1000			
10 ´ 12.5	345	55	280	750			
10´16	345	60	200	500			
10´20	345	60	200	500			
12.5 ´ 20	345	65	280	500			
12.5 ´ 25	345	65	280	500			
16´20	315	65	275	300			
16 ´ 25	315	65	275	300			
16 ´ 31.5	315	65	275	300			
18´20	315	65	275	250			
18´25	315	65	275	250			
18´31.5	315	65	275	250			

EPCOS

B43896 125 °C

Overview of packing units and code numbers for case sizes 4 x 7 ... 16 x 40

Valid for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

Case size	Standard,	Taped,			Kinked leads,	Cut leads,
dxl	bulk	Ammo p	ack		bulk	bulk
mm	pcs.	pcs.			pcs.	pcs.
4 x 7	10000	2000			15000	15000
5 x 7	7500	2000			10000	10000
5 x 11	5000	2000			10000	10000
6.3 x 7	5000	2000			10000	10000
6.3 x 11	5000	2000			5000	5000
8 x 7	5000	1000			5000	5000
8 x 11.5	2500	1000			4000	4000
8 x 15	2000	1000			2500	2500
8 x 20	1500				2000	2000
10 x 12.5	2000	500			2500	2500
10 x 16	1500	500			2000	2000
10 x 20	1000	500			1500	1500
10 x 25	1000	500			1250	1250
12.5 x 16	750	500			1000	1000
12.5 x 20	750	500			500	500
12.5 x 25	750	500			500	500
12.5 x 31.5	500				750	750
12.5 x 35.5	500				750	750
12.5 x 40	500				750	750
16 x 20	375	300			500	500
16 x 25	375	300			500	500
16 x 31.5	250	300			375	375
16 x 35.5	250				375	375
16 x 40	250				375	375
The last three	000	Code	F (mm)	d (mm)	001	002
digits of the		006	3.5	8		
complete		007	2.5	4 6.3		
ordering code		008	5.0	4 12.5		
state the lead		009	7.5	16 18		
configuration		016	2.0	4 5		

125 °C

Overview of packing units and code numbers for case sizes 18 x 20 ... 18 x 40

Valid for series B41002, B41022, B41044, B41827, B41828, B43044, B43082, B43086, B43088, B43827, B43828.

Case size	Standard,	Taped,			Kinked leads,	Cut leads,
dxl	bulk	Ammo pa	ack		bulk	bulk
mm	pcs.	pcs.			pcs.	pcs.
18 x 20	250	250			100	100
18 x 25	250	250			100	100
18 x 31.5	250	250			100	100
18 x 35.5	250				100	100
18 x 40	250				100	100
The last three	000	Code	F (mm)	d (mm)	001	002
digits of the complete		009	7.5	16 18		
ordering code						
state the lead						
configuration						

EPCOS

B43896 125 °C

Overview of packing units and code numbers for case sizes 8 11.5 ... 16 35.5

Valid for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

							PAPR		
Case size	Stan-	Taped	l,		Kinked	Cut	Crimped	J leads,	Bent 90°
díl	dard,	Ammo	pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
8 ´ 11.5	1000	1000							
10 ′ 12.5	1000	750				1000		675	
10´16	1000	500				1000		675	
10´20	500	500			500	500		500	
12.5 ´ 20	350	500	500			350		300	1)
12.5 ´ 25	250	500	500			500		225	1)
12.5 ´ 30	200								
12.5 ´ 35	175								
12.5 ´ 40	175								
16 ´ 20	250	300			200	200	200	200	120
16 ´ 25	250	300			200	200	200	200	120
16 ´ 31.5	200	300			250	250	344	344	120
16 ´ 35.5	100				100	100	150	150	150
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8					
complete		800	5	512.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

125 °C

Overview of packing units and code numbers for case sizes 18 20 ... 18 40

Valid for series B41858, B41859, B41863, B41866, B41868, B41888, B41890, B41896, B42824, B42851, B43866, B43867, B43890, B43896.

						PAPR			
Case size	Stan-	Taped	l,		Kinked	Cut	Crimped	J leads,	Bent 90°
díl	dard,	Ammo	pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
18´20	175	250	250			175	200	200	120
18 ´ 25	150	250	250			150	200	200	120
18 ´ 31.5	100	250			100	100	150	150	120
18 ´ 35	100				100	100	150	150	150
18´40	125				100	100	120		72
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the complete		009	7.5	1618					
ordering code									
state the lead									
configuration									

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have not only been optimized with a view to the intended application, but also with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, part of the high-voltage electrolytes used by EPCOS are self-extinguishing. They contain flame-retarding substances which will quickly extinguish any flame that may have been ignited.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no safe substitute materials are currently known. However, the amount of dangerous materials used in our products has been limited to an absolute minimum. Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors:

- Any escaping electrolyte should not come into contact with eyes or skin.
- If electrolyte does come into contact with the skin, wash the affected parts immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment.
- Avoid breathing in electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

125 °C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Upper category temperature	Do not exceed the upper category temperature.	7.2 "Maximum permissible operating temperature"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Mounting position of screw- terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2 Nm M6: 2.5 Nm	11.3 "Mounting torques"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"

B43896 125 °C

Торіс	Safety information	Reference chapter "General technical information"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Passive flammability	Avoid external energy, such as fire or electricity.	8.1 "Passive flammability"
Active flammability	Avoid overload of the capacitors.	8.2 "Active flammability"
		Reference chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals accessories"

125 °C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C _R	Rated capacitance	Nennkapazität
Cs	Series capacitance	Serienkapazität
$C_{\text{S},\text{T}}$	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C _f	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
\mathbf{d}_{\max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR_{f}	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR_{T}	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
1	Current	Strom
I _{AC}	Alternating current (ripple current)	Wechselstrom
I _{AC,rms}	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
I _{AC,f}	Ripple current at frequency f	Wechselstrom bei Frequenz f
I _{AC,max}	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
I _{AC,R}	Rated ripple current	Nennwechselstrom
I _{AC,R} (B)	Rated ripple current for base cooling	Nennwechselstromstrom für Bodenkühlung
I _{leak}	Leakage current	Reststrom
I _{leak,op}	Operating leakage current	Betriebsreststrom
I	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)
R	Resistance	Widerstand
R _{ins}	Insulation resistance	Isolationswiderstand
R_{symm}	Balancing resistance	Symmetrierwiderstand
Т	Temperature	Temperatur
DT	Temperature difference	Temperaturdifferenz
T _A	Ambient temperature	Umgebungstemperatur
Tc	Case temperature	Gehäusetemperatur
T _B	Capacitor base temperature	Temperatur des Becherbodens
t	Time	Zeit
Dt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

Please rea@autions and warniagsl Important notes the end of this document.

B43896 125 °C

Symbol	English	German
V	Voltage	Spannung
V _F	Forming voltage	Formierspannung
V _{op}	Operating voltage	Betriebsspannung
V _R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
Vs	Surge voltage	Spitzenspannung
X _c	Capacitive reactance	Kapazitiver Blindwiderstand
XL	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Ζ _τ	Impedance at temperature T	Scheinwiderstand bei Temperatur T
tan d	Dissipation factor	Verlustfaktor
l	Failure rate	Ausfallrate
e ₀	Absolute permittivity	Elektrische Feldkonstante
e _r	Relative permittivity	Dielektrizitätszahl
w	Angular velocity; 2 p f	Kreisfrequenz; 2 p f

Note

All dimensions are given in mm.

The following applies to all products named in this publication:

- Some parts of this publication contain statements about the suitability of our products for certain areas of application . These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application . As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified . In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous) . Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time . The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products . Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FormFit, MiniBlue, MiniCell, MKK, MKD, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.