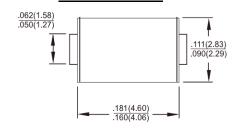
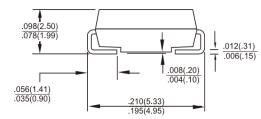


Features


- ♦ For surface mounted application
- ♦ Glass passivated junction chip
- Built-in strain relief, ideal for automated placement
- Plastic material used carries Underwriters Laboratory Classification 94V-0
- ♦ Fast switching for high efficiency
- → High temperature soldering:
 260°C / 10 seconds at terminals
- ♦ Green compound with suffix "G" on packing code & prefix "G" on datecode


Mechanical Data

- ♦ Case: Molded plastic
- ♦ Terminals: Pure tin plated, Lead free
- ♦ Polarity: Indicated by cathode band
- ♦ Packing: 12mm tape per EIA STD RS-481
- ♦ Weight: 0.064 grams

1.0 AMP. Surface Mount Fast Recovery Rectifiers

SMA/DO-214AC

Dimensions in inches and (millimeters)

Marking Diagram

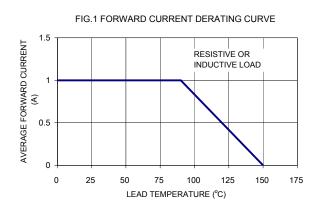
RS1X SGYM RS1X = Specific Device Code G = Green Compound

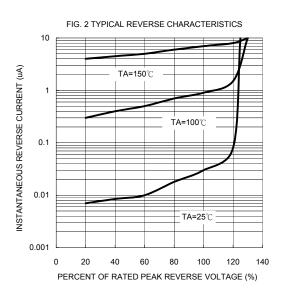
Y = Year
M = Work Month

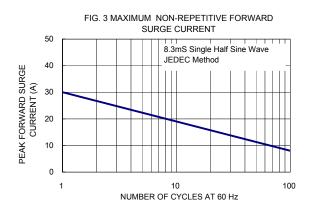
Maximum Ratings and Electrical Characteristics

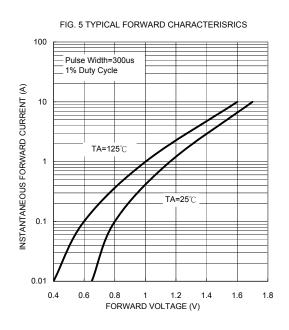
For capacitive load, derate current by 20%

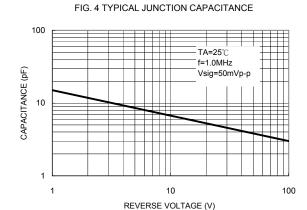
Symbol	RS 1A	RS 1B	RS 1D	RS 1G	RS 1J	RS 1K	RS 1M	Unit
V_{RRM}	50	100	200	400	600	800	1000	V
V_{RMS}	35	70	140	280	420	560	700	V
V_{DC}	50	100	200	400	600	800	1000	V
I _{F(AV)}	1							Α
I _{FSM}	30						Α	
V _F	1.3						V	
I _R	5 50							uA
Trr	150		250	50	00	nS		
Cj	10						pF	
$R_{ heta j A} \ R_{ heta j C}$	105 32						°C/W	
TJ	- 55 to + 150						οС	
T _{STG}	- 55 to + 150						°С	
	$\begin{array}{c} V_{RRM} \\ V_{RMS} \\ V_{DC} \\ \\ I_{F(AV)} \\ \\ I_{FSM} \\ \\ V_{F} \\ \\ I_{R} \\ \\ Trr \\ Cj \\ R_{\theta j A} \\ R_{\theta j C} \\ \\ T_{J} \\ \end{array}$	V _{RRM} 50 V _{RMS} 35 V _{DC} 50 I _{F(AV)} I _{FSM} V _F I _R Trr Cj R _{θjA} R _{θjC} T _J	Name	Symbol 1A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$


Note 1: Pulse Test with PW=300 usec, 1% Duty Cycle


Note 2: Reverse Recovery Test Conditions: I_F =0.5A, I_R =1.0A, I_{RR} =0.25A


Note 3: Measured at 1 MHz and Applied Reverse Voltage of 4.0V D.C.




RATINGS AND CHARACTERISTIC CURVES (RS1A THRU RS1M)

