

UL Recognized File # E-326243

High efficiency, low VF

High current capavility

High surge current capability

code & prefix "G" on datecode.

Cases: ITO-220AC molded plastic

Epoxy: UL 94V-0 rate flame retardant

MIL-STD-202, Method 208 guaranteed

High temperature soldering guaranteed:

260°C/10 seconds 16".,(4.06mm) from case.

For use in low voltage, high frequency inventor,

Green compound with suffix "G" on packing

High reliability grade (AEC-Q101 qualified)

free wheeling, and polarity protection application

High reliability

Low power loss.

Mechanical Data

Polarity: As marked

Features

∻

∻

∻

∻

∻ ∻

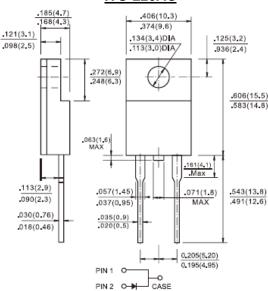
∻

∻

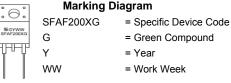
∻

∻

∻


∻

∻


∻

SFAF2001G - SFAF2008G

20.0AMPS. Isolated Glass Passivated Super Fast Rectifiers ITO-220AC

Dimensions in inches and (millimeters)

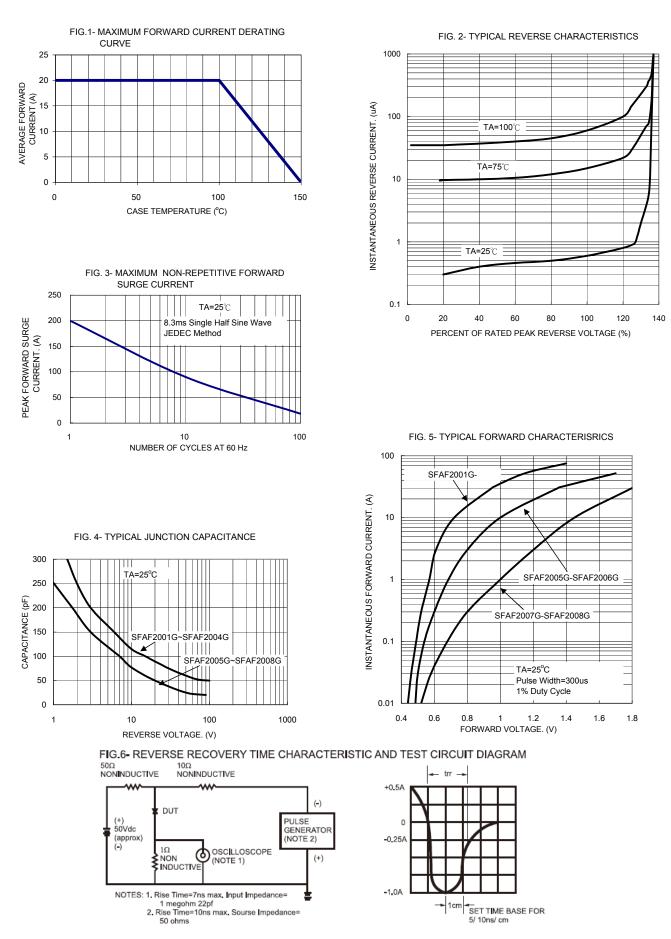
- Marking Diagram
- Weight: 1.70 grams ∻

Terminals: Pure tin plated, lead free, solderable per

Maximum Ratings and Electrical Characteristics Rating at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%

Type Number	Symbol	SFAF 2001G	SFAF 2002G	SFAF 2003G	SFAF 2004G	SFAF 2005G	SFAF 2006G	SFAF 2007G	SFAF 2008G	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	150	200	300	400	500	600	V
Maximum RMS Voltage	V _{RMS}	35	70	105	140	210	280	350	420	V
Maximum DC Blocking Voltage	V _{DC}	50	100	150	200	300	400	500	600	V
Maximum Average Forward Rectified Current @T_c=100 $^\circ\!$	I _{F(AV)}	20								А
Peak Forward Surge Current, 8.3 ms Single Half Sine- wave Superimposed on Rated Load (JEDEC method)	I _{FSM}	200							А	
Maximum Instantaneous Forward Voltage (Note 1) @ 20 A	V _F	0.975 1.3 1.7				.7	V			
Maximum DC Reverse Current@ T $_A$ =25 °Cat Rated DC Blocking Voltage@ T $_A$ =100 °C	I _R	10 400								uA uA
Maximum Reverse Recovery Time (Note 2)	Trr	35								nS
Typical Junction Capacitance (Note 3)	Cj	170 150					pF			
Typical Thermal Resistance	$R_{ extsf{ heta}JC}$	3								°C/W
Operating Temperature Range	TJ	- 65 to + 150								°C
Storage Temperature Range	T _{STG}	- 65 to + 150								°C

Note 1: Pulse Test with PW=300 usec, 1% Duty Cycle


Note 2: Reverse Recovery Test Conditions: I_F =0.5A, I_R =1.0A, I_{RR} =0.25A.

Note 3: Measured at 1 MHz and Applied Reverse Voltage of 4.0V D.C.

Version:E11

RATINGS AND CHARACTERISTIC CURVES (SFAF2001G THRU SFAF2008G)

